Глава 10

Исследование новорожденных мышей для выяснения функций лимфоцитов пуповинной крови человека

Cheri D. Landers • Subbarao Bondada

Восприимчивость новорожденных детей к инфекциям

Иммунный ответ организма новорожденных детей

Иммунный ответ организма новорожденных мышей

Корреляция неонатальных показателей иммунного ответа человека и мыши

Различия иммунореактивности человека и мыши

Клиническое применение данных и необходимость дальнейших исследований

Разработанные на животных модели патологий человека дают возможность проведения более контролируемых исследований in vivo и in vitro по сравнению с тем, что можно сделать непосредственно в исследованиях с участием людей. Сведение до минимума генетических различий у животных, создание трансгенных и нокаутных животных путем направленных мутаций и скрещивания, жесткий контроль условий среды и экспериментов — все это позволяет исследовать сложные синдромы и заболевания человека на различных уровнях, включая молекулярный. Животные модели используют также для изучения потенциально небезопасных терапевтических средств и методов до проведения исследований в популяциях человека. Недостатки исследований, моделирующих патофизиологию и терапию заболеваний у человека, обусловлены физиологическими различиями человека и животных, а также генетической вариабельностью у людей, не свойственной большинству изучаемых видов животных. Это означает, что экстраполяция на человека данных, полученных на животных, не всегда возможна, однако эти данные служат отправной точкой для проведения исследований с участием людей. Чаще всего для изучения физиологии и моделирования заболеваний человека используют мышей. Их легко разводить, для их содержания нужно мало места, и они имеют установленные генетические характеристики. Модели на мышах используют для изучения самых разнообразных процессов: иммунной регуляции [1], развития нервной системы и ее заболеваний [2–5], сосудистых болезней [6], лекарственной терапии [7, 8], механизмов заболеваний легких [9, 10], врожденных заболеваний и пороков развития [2, 11], патогенеза, этиологии и лечения опухолей [7, 12–14] и терапии инфекционных заболеваний [15, 16].

Сведения об иммунной системе человека необычайно расширились благодаря использованию животных моделей. Иммунная система человека состоит из первичных и вторичных лимфоидных органов; костный мозг служит источником образования иммунных клеток и вторичных лимфоидных органов (селезенка и другие органы), где происходит иммунный ответ. Архитектура лимфоидных органов, цитокины и хемокины играют первостепенную роль в осуществлении иммунного ответа. Нормальный ответ иммунной системы человека усиливается от неонатального периода до взрослого возраста, а затем снижается по мере старения. Такие же изменения происходят в течение жизни у мышей. Кроме того, мыши при рождении обладают наименьшей степенью зрелости среди всех млекопитающих, и им требуется около 1/15 продолжительности жизни, чтобы достичь полной иммунокомпетентности [17]. В связи с этим исследование неонатального иммунного ответа у мышей существенно расширяет знания о развитии иммунной системы у человека. В частности, иммунный ответ лимфоцитов новорожденных мышей используют как модель неонатального иммунного ответа человека и особое внимание уделяют исследованию лимфоцитов пуповинной крови [18–21]. В данной главе представлен краткий обзор восприимчивости новорожденных детей к инфекциям, описаны состояния дефицита иммунной системы новорожденных, особое внимание уделено недостаточности продукции иммуноглобулинов В-клетками в ответ на специфические антигены. Все эти сведения даны в сопоставлении с тем, что происходит в организме новорожденных мышей, а также описаны исследования, проведенные на новорожденных мышах, открывающие возможности повышения ответа неонатальных лимфоцитов на антиген.

ВОСПРИИМЧИВОСТЬ НОВОРОЖДЕННЫХ ДЕТЕЙ К ИНФЕКЦИЯМ

Новорожденные более восприимчивы к разнообразным инфекциям, чем взрослые. Это обусловлено незрелостью острого воспалительного ответа, недостаточным взаимодействием Т- и В-клеток, слабым развитием иммунологической памяти, низкой продукцией антител в слизистых оболочках и сниженным ретикулоэндотелиальным клиренсом. Все это приводит к повышению чувствительности к Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae типа b, Neisseria meningitidis, вирусам и кандидозным инфекциям в первые 6 мес жизни [22]. Маленькие дети особенно чувствительны к инфекциям, вызываемым бактериями, имеющими полисахаридную капсулу, из-за отсутствия продукции антител в ответ на полисахаридные антигены. К такого рода бактериям относятся *H. influenzae*, S. pneumoniae и N. meningitidis [23, 24]. Эти микроорганизмы могут вызвать чрезвычайно тяжелые инвазивные заболевания — пневмонию, сепсис и менингит, связанные со значительным риском летального исхода. Антитела к капсульным полисахаридам данных бактерий играют первостепенную роль в элиминации этих внеклеточных микроорганизмов. Как только антитела начинают взаимодействовать с антигеном-мишенью, образование комплекса антиген-антитело

ослабляет инфекционные свойства бактерий и инициирует различные реакции, приводящие к высвобождению воспалительных медиаторов, активации комплемента, опсонизации и фагоцитозу [25].

Приблизительно до 4–6-месячного возраста иммунитет ребенка обеспечивают иммуноглобулины, полученные от матери в результате трансплацентарного переноса IgG. После элиминации этих антител ребенок с 6 мес до 2 лет жизни становится восприимчивым к опасным инфекциям, вызываемым капсульными бактериями [22, 26–28]. Позднее, в возрасте 2–5 лет, дети приобретают способность к иммунному ответу на полисахаридные антигены. Чтобы создать иммунитет к опасным заболеваниям в интервале от 6 мес до 5 лет, детям в первые 6 мес вводят вакцины против полиовирусов, Corynebacterium diphtheriae, Clostridium tetani, Haemophilus influenzae типа b, вируса гепатита B, Bordetella pertussis и Streptococcus pneumoniae. Эти вакцины защищают ребенка от полиомиелита, дифтерии, столбняка, гепатита, коклюша, а также от тяжелой пневмонии, сепсиса и менингита.

До начала вакцинации конъюгированным белком *H. influenzae* типа b (Hib) вызываемое Hib заболевание было наиболее частой бактериальной инфекцией у маленьких детей в индустриальных странах [29]. Степень тяжести заболевания варьировала от сравнительно легкой (средний отит) до очень тяжелой (сепсис и менингит). Новорожденные до 6-месячного возраста заболевали редко вследствие передачи материнских антител через плаценту, и пик заболеваемости приходился на период от 6- до 12-месячного возраста, когда материнские антитела исчезали, а собственные Ig ребенок еще не продуцировал [29]. Естественный иммунитет к Hib возникает в результате носоглоточной колонизации или инфекции, однако ни естественный, ни приобретенный после вакцинации чистым полисахаридом иммунитет не развивается до возраста 2 лет. Кроме того, отсутствуют развитие иммунологической памяти и вторичный ответ (продукция антител) после естественной или проведенной чистым полисахаридом вакцинации. Именно поэтому и была разработана конъюгированная белковая вакцина.

После успешной разработки вакцины против Hib самой распространенной инфекцией раннего и старшего детского возраста стало заболевание, вызываемое *S. pneumoniae*. Наиболее распространено инвазивное пневмококковое заболевание среди детей в возрасте до 2 лет, после чего частота заболеваемости снижается и постепенно вновь повышается в пожилом возрасте [30]. Недавно была разработана конъюгированная вакцина против *S. pneumoniae*, которую вводят детям.

Применяемые в настоящее время вакцины против *Haemophilus influenzae* типа b и семивалентная вакцина Prevnar® фирмы Wyeth pharmaceuticals против *S. pneumoniae* эффективны, поскольку бактериоспецифический капсульный полисахарид конъюгирован с белком, например со столбнячным анатоксином или мутантным дифтерийным токсином. Конъюгированные вакцины вызывают развитие иммунологической памяти и способность к вторичному иммунному ответу. Их применение позволило снизить частоту возникновения тяжелых Ніb-инфекций и примерно на 75% уменьшить число случаев инвазивной пневмококковой инфекции, которую вызывают 7 серотипов, включенных в вакцину [31] (табл. 10–1). Однако всего существует 90 индивидуальных серотипов *S. pneumoniae*, поэтому разработка всеохватывающей вакцины была прекращена. Современная вакцина содержит только 7 наиболее распространенных и инвазивных серотипов.

ТАБЛИЦА 10-1	Полисахаридно-капсульные бактерии и доступные вакцины		
Бактерии	Вакцина	Примечания	
Haemophilus influenzae	Конъюгированная белковая	Введение с 2-месячного возраста; много доступных лицензированных вакцин с различными белками; снижение тяжелых инфекций	
Streptococcus pneumoniae	Полисахаридная (23-валентная) Конъюгированная белковая (7-валентная)	Неэффективна у детей раннего возраста Эффективна у детей до 2 лет; введение с 2-месячного возраста; возможно возникновение инфекций, вызываемых невакцинными серотипами	
Neisseria meningitidis	Полисахаридная	Неэффективна у детей до 2 лет; включает типы A, C, Y и W-135 (не тип B)	

Оставшиеся 83 серотипа, не включенные в конъюгированную пневмококковую вакцину, все же могут вызвать заболевание. Появились данные, что частота пневмококковых заболеваний, обусловленных невакциными серотипами 15 и 33, возрастает [31]. Конъюгированные вакцины наглядно демонстрируют, как исследования на мышах помогли создать эффективные вакцины для новорожденных детей [32–37].

Пик заболеваемости, вызываемой третьим представителем полисахаридно-капсульных бактерий, *N. meningitidis*, приходится на возрастной интервал 6—15 мес, причем заболевание может варьировать от бессимптомного носоглоточного носительства до внезапно развивающегося шока, приводящего к смерти в считаные часы [38]. В настоящее время вакцина против *N. meningitidis*, которую можно было бы применять для иммунизации детей до 2-летнего возраста, отсутствует. Существующие вакцины используют для иммунизации подростков и взрослых (вакцины для них состоят только из капсульного полисахарида *N. meningitidis*) [39].

иммунный ответ организма новорожденных детей

Новорожденные и дети раннего возраста более восприимчивы к инфекциям, чем взрослые, вследствие ряда факторов. И врожденный иммунитет, и адаптивный иммунитет еще недостаточно развиты, организм слабо отвечает на инвазию вирусов, бактерий или грибов. Нейтрофилы, макрофаги, дендритные клетки, $\gamma\delta$ -Т-клетки и В-1-клетки представляют собой основные медиаторы врожденного иммунитета, тогда как для адаптивного иммунного ответа необходимы Т-клетки, В-клетки, дендритные клетки и макрофаги [40].

Функции нейтрофилов

Нейтрофилы являются одним из компонентов врожденного иммунитета и характеризуются быстрым ответом, не изменяющимся при повторной встрече с тем же самым микроорганизмом. Нейтрофилы и мононуклеарные фагоциты создают первую линию защиты против бактерий, грибов и простейших. Эти клетки содержат поверхностные рецепторы для антител и комплемента, позволяющие им распознавать связанные с патогенами антитела и/или комплемент, что усиливает фагоцитоз микроорганизмов [40]. По сравнению со взрослыми у де-

тей в костном мозге еще недостаточен резервный пул нейтрофилов, мобилизуемый во время инфекции, даже если число циркулирующих в крови нейтрофилов превышает их содержание у взрослых [41]. Также снижена способность неонатальных нейтрофилов к адгезии и миграции через эндотелий в нормальных условиях и при стимуляции [42-45], уменьшены число и поверхностная экспрессия рецепторов комплемента [46-48], снижена бактерицидная активность при генерализованных инфекциях [49], недостаточна опсонизирующая активность, низок уровень показателей окислительного метаболизма, снижены хемотаксис (направленное движение клеток) [50], хемокинез (неупорядоченное движение клеток) и внутриклеточный киллинг (переваривающая способность) [51–55] нейтрофилов. Это делает новорожденного склонным к нейтропении после истощения запаса циркулирующих нейтрофилов, снижает способность к изоляции микроорганизмов и уничтожению их нейтрофилами, когда организм инвазируют патогены (табл. 10-2).

Адаптивный иммунитет

Первый контакт организма с патогеном индуцирует адаптивный иммунный ответ, называемый также первичным иммунным ответом. В нем участвуют иммунные клетки различных типов: Т-клетки, В-клетки, дендритные клетки и макрофаги. Адаптивный иммунный ответ подразделяют на клеточно-опосредованный (клеточный) и гуморальный. Важным отличительным признаком адаптивного иммунного ответа служит иммунологическая память, позволяющая организму отвечать быстрее и более специфично при вторичном контакте с тем же патогеном, который вызвал первичный иммунный ответ.

Иммунитет, опосредованный Т-лимфоцитами

Одним из компонентов адаптивного иммунитета является клеточный иммунитет, опосредованный Т-лимфоцитами. Его назначение — борьба с внутриклеточными микроорганизмами [56]. Т-клеточный иммунитет индуцируют хелперные Т-лимфоциты (CD4⁺) или цитотоксические Т-лимфоциты (CD8+). При стимуляции антигеном наивные Т-клетки дифференцируются в клетки двух субпопуляций, для каждой из которых характерен определенный профиль продуцируемых цитокинов. Так, Th1-клетки секретируют IFN-γ и IL-12, Th2-клетки — IL-4 и IL-5 [40]. Th1-клетки играют главную роль в клеточном иммунитете, от которого зависит уничтожение внутриклеточных бактерий, например Mycobacterium spp., или паразитов, например Leishmania. Th2-клетки ответственны за гуморальный иммунный ответ, направленный на борьбу с инфекциями, вызываемыми внеклеточными бактериями и гельминтами. По отношению к атопическим и неатопическим антигенам Th1-ответ организма новорожденных менее выражен, чем Th2-ответ [57, 58]. Однако Th1-ответ организма новорожденных может достигнуть уровня ответа организма взрослых при определенных условиях, например в результате иммунизации вакциной БЦЖ, состоящей из Mycobacterium bovis [59–61]. Ответ Th2-типа преобладает, когда плод подвергается действию антигенов внешней среды in utero [59, 62, 63]. Аналогично активность цитотоксических Т-лимфоцитов у новорожденных может стать такой же, как у взрослых, только в определенных ситуациях, в частности в случае врожденной инфекции, вызванной цитомегаловирусом или $Trypanosoma\ cruzi\ [64, 65]\ (см.\ табл.\ 10.2).$

ТАБЛИЦА 10-2 Характеристики иммунитета взрослых и новорожденных Иммунные клетки Взрослые Новорожденные Нейтрофилы Быстрый ответ Быстрый ответ Отсутствие памяти Отсутствие памяти Пул в костном мозге Сниженный резерв в костном мозге Рецепторы комплемента Уменьшение и антител на клеточной поверхности Мигрируют в очаг инфекции Адгезия и миграция снижены Фагоцитоз и внутриклеточное Снижение уничтожение Т-клетки Память Память Th 1- и Th 2-клетки Th2-ответ выше, чем Th1 Цитотоксические Ответ цитотоксических Т-лимфоциты Т-лимфоцитов достигает уровня взрослых лишь при определенных условиях В-клетки/Ig Память Кратковременная память Секреция антител против: TD-антигенов Ответ замедлен, пик и аффинность ниже TI-антигенов Недостаточный ответ Секреция IgM, IgG1, IgG2 IgM, IgG1, мало IgA иlgA Уровень IgG, свойственный Материнский IgG со временем взрослым деградирует, минимум IgG в возрасте 3-4 мес Вспомогательные Баланс анти-Секреция цитокинов клетки и провоспалительных цитокинов Внутриклеточное Снижение уничтожение

Сниженное количество клеток

Иммунитет, опосредованный В-лимфоцитами

Презентация антигена

Другим компонентом адаптивного иммунитета является гуморальный иммунитет, опосредованный В-клетками, секретирующими специфические антитела к антигенам/микроорганизмам. Также для активного гуморального иммунного ответа нужно воздействие микроорганизма, однако в данном случае микроорганизм должен быть внеклеточным. Антитела специфически распознают микробные антигены, ослабляют их инфективность и инициируют элиминацию патогена из организма [25]. Гуморальный иммунитет может быть пассивным или активным. Пассивный иммунитет создают материнские антитела (класса IgG, но не IgM), проходящие через плаценту. Со временем эти антитела деградируют, и поскольку ребенок в это время неспособен продуцировать такое же количество IgG, как взрослый, уровень IgG у него достигает минимума в возрасте 3–4 мес [66, 67].

Способность к активному гуморальному иммунному ответу развивается постепенно на протяжении первых лет жизни. Неонатальная антигенспецифическая продукция антител неполноценна в отноше-

TD — тимус-зависимые; Th1 и Th2 — Т-хелперы типов 1 и 2; TI — тимус-независимые; Ig — иммуноглобулины.

нии некоторых типов антигенов (например, полисахаридов и липополисахаридов), и неонатальный IgG-ответ ограничен некоторыми подклассами. В ответ на полисахаридные антигены независимо от возраста образуются антитела IgG, IgA и IgM, однако дети продуцируют главным образом IgG1, а взрослые и IgG1, и IgG2 [68, 69]. Основная причина нарушенного ответа на полисахариды у детей — незрелость В-клеток. Поскольку фенотип и локализация субпопуляций В-клеток меняются с возрастом, у детей развивается способность продуцировать антитела к полисахаридным антигенам подобно взрослым [22]. Каждый подкласс Ig достигает «взрослого» уровня в различном возрасте, а к 12 годам уровень всех подклассов Ig у детей и взрослых становится одинаковым [70] (см. табл. 10.2).

В дополнение к слабому ответу на естественную инфекцию ответ организма новорожденных и маленьких детей на вакцинацию отличается от ответа организма взрослых. Часто новорожденные неспособны развивать полноценный иммунный ответ на иммунизацию чистыми полисахаридами, который эффективен у молодых взрослых индивидов [24]. Полисахаридные антигены сами по себе стимулируют тимус-независимый (TI) ответ, т.к. они плохо процессируются или совсем не процессируются антигенпрезентирующими клетками. Это обусловливает неспособность АПК индуцировать специфичные к полисахаридам хелперные Т-клетки. Впервые ТІ-антигенами назвали такие антигены, которые были способны индуцировать иммунный ответ у бестимусных («голых») мышей [71]. Однако затем пришлось ввести более сложное определение, т.к. было обнаружено, что в действительности бестимусные мыши имеют небольшое количество CD4⁺ и CD8⁺ Т-клеток [72]. Конъюгированные белковые вакцины (т.е. полисахариды H. influenzae и S. pneumoniae, связанные с белками, например столбнячным или дифтерийным токсином) стимулируют тимус-зависимый (TD) ответ и вызывают у новорожденных более выраженный иммунитет, чем чистые полисахариды. ТD-ответ требует презентации процессированного антигена Т-клеткам молекулами ГКГС класса II. К TD-антигенам относятся белки, вирусы, нуклеиновые кислоты и эритроциты. В отличие от TI-антигенов TD-антигены способны вызвать определенный иммунный ответ организма новорожденных. Однако этот TD-ответ развивается медленно, он менее высок и продолжителен, чем у взрослых; образующиеся антитела имеют сниженные аффинность и гетерогенность по сравнению со взрослыми и отличаются по типу подкласса IgG, причем новорожденные продуцируют меньше IgG2 [73] (см. табл. 10.2). Этот неполноценный ответ обусловлен, по крайней мере частично, неполным развитием лимфоидной ткани до 4-месячного возраста [74].

Тимус-независимый ответ не нуждается в презентации антигена молекулами ГКГС класса II, но требует участия В-клеток и макрофагов. Макрофаги служат источником цитокинов, способствующих созреванию и дифференцировке В-клеток. У новорожденных этот ТІ-ответ слабый; ТІ-антигены деградируют медленнее, чем ТD-антигены, не индуцируют иммунологическую память (или она выражена слабо) и продукцию антител, которая возникает лишь в более позднем возрасте. ТІ-ответ подразделяют на ответы ТІ-1 и ТІ-2. Примерами антигенов, вызывающих ответ ТІ-1, служат липополисахариды, убитые нагреванием бактерии Brucella abortus, Neisseria meningitidis, экстракт Nocardia и белки наружной мембраны. ТІ-2-антигены включают ТNР-фиколл и бактериальные полисахариды,

выделенные из H. influenzae, S. pneumoniae и N. meningitidis [75] (табл. 10-3). TI-2-антигены могут перекрестно связывать B-клеточные рецепторы, стимулируя активацию B-клеток. Хотя ответ TI-2 не требует презентации антигенов молекулами $\Gamma K \Gamma C$ класса II, он зависит от антигеннеспецифических T-клеток u/uли цитокинов, продуцируемых T-клетками и вспомогательными клетками [76, 77].

Возможными причинами неспособности новорожденных детей отвечать на ТІ-2-антигены, например полисахариды, являются незрелость В-клеточной популяции [78], дефицит субпопуляций В-клеток, отвечающих на ТІ-2-антигены [75], повышенная чувствительность неонатальных В-клеток к индукции толерантности [79], неадекватный баланс Т-клеток-супрессоров и Т-клеток-амплификаторов [80] и дефекты вспомогательных клеток, в том числе неадекватная продукция стимулирующих цитокинов и избыточное образование ингибирующих цитокинов [81].

Одновременно с появлением способности маленьких детей отвечать на полисахаридные антигены происходят изменения фенотипа и локализации субпопуляций В-клеток. Неонатальные В-клетки экспрессируют IgM и IgD также, как IgG или IgA, указывая на неполное переключение изотипа тяжелых цепей в этом возрасте [78]. Кроме того, неонатальные В-клетки относятся преимущественно к CD5+ (маркер субпопуляции В-клеток, развивающейся на ранней стадии онтогенеза), а с возрастом становятся преимущественно CD5- [40, 82–85]. Неонатальные В-клетки имеют меньше рецепторов цитокинов IL-2 (вместе с IL-4 стимулируют пролиферацию активированных В-клеток), IL-4, IL-6 (стимулируют созревание В-клеток в плазматические клетки и продукцию антител) и IL-7 (стимулируют пролифера-

ТАБЛИЦА 10-3 Характеристики тимус-независимого и тимус-зависимого иммунных ответов				
	Тимус-независимый иммунный ответ		Тимус- — зависимый	
	TI-1	TI-2	зависимый иммунный ответ	
Необходимость презентации молекулами ГКГС класса II	Нет	Нет	Да	
Необходимость в В-клетках и макрофагах	Да	Да	Нет	
Новорожденные	Слабый ответ	Слабый ответ	Адекватный ответ	
Деградация антигена	Медленная	Медленная	Быстрая	
Память	Отсутствует или слабая	Отсутствует или слабая	Да	
Примеры антигенов	Липополисахариды Brucella abortus Экстракт Nocardia N. meningitidis — убитые нагреванием бактерии и белок наружной мембраны	TNP-фиколл Бактериальные полисахариды	Белки Вирусы Липопротеины Эритроциты	

цию незрелых В-клеток) и обладают сниженной способностью повышать экспрессию рецептора IL-2 при стимуляции [86–88].

Селезенка играет важную роль в В-клеточном иммунитете; у пациентов с функциональной или хирургической спленэктомией повышена восприимчивость к инфекциям, вызываемым полисахариднокапсульными бактериями [89]. Рецептор компонента комплемента С3 (CD21) является маркером зрелых В-клеток; В-клетки, присутствующие в краевой зоне селезенки, экспрессируют CD21 на высоком уровне. CD21 представляет собой рецептор комплемента, связывающий продукты расщепления С3b и образующий комплекс с двумя другими рецепторами [90]. Одновременное связывание В-клеточного рецептора и CD21 усиливает B-клеточный ответ и снижает порог стимуляции В-клеток на несколько порядков. Связывание В-клеточных рецепторов с микроорганизмами, на которых отложен компонент С3b, усиливает их ответ [91]. В селезенке новорожденных В-клетки CD21⁺ краевой зоны отсутствуют. Кроме того, селезенка представляет собой источник В-клеток ІдМ-памяти, которые оказываются клеточной популяцией, ответственной за продукцию антител к полисахаридным антигенам. У детей до 2 лет В-клетки IgM-памяти отсутствуют. Со временем эта популяция появляется в циркулирующей крови, и ребенок становится способным отвечать на полисахаридные антигены [92].

Функции вспомогательных клеток (макрофаги/моноциты и дендритные клетки)

Некоторые функции макрофагов/моноцитов у детей также еще несовершенны. Макрофаги у детей хуже отвечают на хемотаксические факторы сыворотки, не способны эффективно функционировать вследствие сниженной опсонической активности и более чувствительны к метаболическому стрессу, т.к. обладают уменьшенной пируваткиназной активностью и содержат меньше ATФ [93, 94]. Макрофаги продуцируют сниженное количество Г-КСФ, что способствует развитию нейтропении в условиях стресса, сниженное количество IL-6 и при воздействии IFN-γ активируются слабее [95–98].

Дендритные клетки представляют собой антигенпрезентирующие клетки, инициирующие иммунный ответ наивных Т-клеток или индуцирующие толерантность к аутоантигенам. Дендритные клетки образуются из клеток моноцитарной линии в присутствии ГМ-КСФ и/или IL-4 и выполняют функцию «клеток-часовых», расположенных в местах наиболее вероятной микробной инвазии, захватывающих антиген и презентирующих его наивным хелперным Т-клеткам [99]. Стимулированные дендритные клетки или мононуклеарные клетки пуповинной крови продуцируют сниженный уровень IL-12р70 и IL-12р35 (субъединицы стимулирующего цитокина IL-12) по сравнению со взрослыми [100–105]. Образующиеся из моноцитов макрофаги и плазмоцитоидные дендритные клетки новорожденных отвечают сниженной активацией и продукцией цитокинов при стимуляции IFN-γ или CpG-ДНК (см. далее) [106, 107] (см. табл. 10.2).

Продукция цитокинов

Цитокины представляют собой растворимые медиаторы, продуцируемые главным образом иммунными, но также неиммунными клетками. Цитокины оказывают выраженное влияние на функции Т-клеток, В-клеток, ДК, макрофагов и некоторых неиммунных клеток. Суще-

ствуют противоречивые данные, касающиеся количества цитокинов, образуемых неонатальными иммунными клетками. В большинстве исследований показано, что моноциты пуповинной крови продуцируют меньше $TNF-\alpha$, чем моноциты взрослых индивидов [108-112]. В одной из работ было установлено, что неонатальные моноциты человека продуцируют меньшее количество IL-1, чем взрослые моноциты при $\Lambda\Pi C$ стимуляции [110]. В других работах не найдено различий в образовании IL-1 моноцитами после стимуляции $\Lambda\Pi C$ или IFN- γ [108, 109, 111, 113]. Существуют также противоречивые данные о продукции IL-6 неонатальными моноцитами человека. Некоторые авторы выявили дефицит продукции IL-6 по сравнению со взрослыми клетками [96, 98, 108], другие различий не обнаружили [109, 114, 115], а третьи описали повышенную продукцию IL-6 мононуклеарными клетками пуповинной крови как на базовом уровне [116], так и в ответ на стимуляцию [116-118]. Мононуклеарные клетки пуповинной крови и мононуклеарные клетки периферической крови новорожденных после стимуляции образуют меньше IFN-γ, чем взрослые PBMC [119, 120]. В одной из работ определяли уровень продукции IL-8 в пуповинной крови и крови новорожденных и сравнивали с уровнем IL-8 у взрослых. При стимуляции $\Lambda\Pi C$ образование IL-8 было выше в пуповинной крови, чем в крови взрослых; базовый уровень IL-8 также был выше в пуповинной крови после инкубации в отсутствие стимулов [118]. В одном исследовании было установлено, что уровень мРНК и внутрицитоплазматическая продукция противовоспалительного цитокина IL-10 были менее выражены в пуповинной крови, чем в крови взрослых, после ЛПС-стимуляции [121], тогда как в другом исследовании был определен сходный уровень продукции в различных возрастных группах, когда клетки инкубировали вместе с грамположительными и грамотрицательными бактериями [117]. Возможные причины противоречивости результатов в этих исследованиях, проведенных с участием людей, могут заключаться в том, что использовали различные клеточные популяции (периферическую цельную кровь, мононуклеарные клетки или макрофаги/моноциты), различные стимулы (ЛПС, фитогемагглютинин, бактерии), методы определения (мРНК, внутриклеточное содержимое, супернатант и т.д.), а число доноров было ограниченным.

ИММУННЫЙ ОТВЕТ ОРГАНИЗМА НОВОРОЖДЕННЫХ МЫШЕЙ

У новорожденных мышей, как и у человека, иммунокомпетентность снижена и возрастает со временем, пока мыши не станут взрослыми. В связи с этим разработанные на мышах модели позволяют дать ответы на ряд вопросов, относящихся к особенностям иммунного ответа новорожденных детей. Популяции иммунных клеток для исследования обычно получают из селезенки, лимфоузлов, тимуса, легких и брюшной полости мышей, а не из периферической крови, поскольку, как указано ранее, с кровью связаны некоторые различия, выявляемые при экстраполяции на человека данных, полученных в экспериментах на мышах.

Иммунитет, опосредованный Т-лимфоцитами

Количество Т-клеток у новорожденных мышей снижено по сравнению со взрослыми животными на 1-2 логарифма, возможно

обусловливая ограниченный защитный ответ после воздействия антигена; однако субпопуляция неонатальных клеток мыши способна пролиферировать [122]. СD4+ Т-клетки новорожденных мышей происходят как из фетальных, так и из взрослых гемопоэтических клеток-предшественников. После иммунизации Т-клетки фетального происхождения дают преимущественно Th2-ответ при повторном воздействии иммунизирующего антигена [123]. Т-клетки фетального происхождения присутствуют также у человека, и действие антигенов среды in utero вызывает в большей степени Th2-ответ [57, 59, 62, 63]. В ранних исследованиях было установлено, что неонатальные Т-клетки особенно склонны к развитию толерантности, определяемой в модели трансплантации. Недавние исследования показали, что это обусловлено дисбалансом соотношения Т-клеток и дендритных клеток [124], а также может быть связано с отсутствием регуляторных CD4+ и CD8+ Т-клеток [59]. У новорожденных мышей можно индуцировать Т-клеточный ответ, сопоставимый по уровню с ответом взрослых животных, при создании определенных условий, в частности в присутствии адекватного количества дендритных клеток [59, 124]. Ответ неонатальных Т-клеток сдвинут в сторону образования Th2-клеток, однако он может быть превращен в ответ Th1-клеток, если действие антигена сочетается с агентами, способствующими Th1-ответу, такими как ДНК-вакцины или олигонуклеотиды, содержащие мотив СрG. Th2-сдвиг у новорожденных мышей не столь выражен, как у новорожденных детей, а в некоторых ситуациях, например при малярийной инфекции [125], у новорожденных детей снижен как Th1-, так и Th2-ответ. Происхождение или локализация неонатальных Т-клеток могут способствовать ответу, вызываемому инфекцией. Так, неонатальные клетки лимфоузлов мышей остаются дефицитными по Th1-ответу при трансплантации взрослым мышам, тогда как неонатальные клетки селезенки способны выполнять функции зрелых Th1клеток и устранять инфекции, вызванные Pneumocystis carinii, при переносе взрослым мышам [126, 127]. Неонатальные цитотоксические Т-лимфоциты дают сильный первичный ответ и/или развитие иммунологической памяти при действии сильных стимулирующих Th1ответ агентов, указанных ранее [59]. Недавно было обнаружено, что функция цитотоксических СD8+ Т-клеток у новорожденных сравнима с таковой у взрослых индивидов (как у мышей, так и у человека), особенно если исследование проводят в короткий период времени после иммунизации [59].

Иммунитет, опосредованный В-лимфоцитами

У новорожденных мышей, как и у новорожденных детей, TD- и TI- ответы менее выражены по сравнению со взрослыми особями. Были обнаружены фенотипические различия у новорожденных мышей, у которых незрелые B-клетки $IgM^+/IgD^{low/-}$ преобладали в популяции B-клеток селезенки. Незрелые B-клетки генерируют отрицательные сигналы, когда их B-клеточный рецептор связывается с лигандом; они не повышают экспрессию костимулирующих молекул или молекул Γ KГС класса II, дающих возможность взаимодействия с T-клетками при TD-ответе [128–130]. Концепция TI-ответа была создана в результате обширных исследований на мышах, в частности на «голых» с врожденным отсутствием тимуса. B последующих работах с использованием современных методов разделения клеток было установле-

но, что высокоочищенные В-клетки, полученные у взрослых мышей, способны отвечать на ТІ-антигены при полном отсутствии Т-клеток. Однако на ответ В-клеток на ТІ-антигены оказывают существенное влияние вспомогательные клетки или цитокины, полученные из Т-лимфоцитов или вспомогательных клеток. Исследования *in vivo* на трансгенных мышах, несущих В-клеточные рецепторы, показали, что ТІ-ответ осуществляется в первую очередь В-клетками краевой зоны селезенки с участием дендритных клеток крови и перитонеальных В-1-клеток [131, 132]. Данные, полученные в результате исследования на мышах, свидетельствуют о том, что для развития В-1-клеток, которые играют определенную роль в продукции антител к полисахаридам, нужно наличие селезенки [133]. Как и человек, мыши при рождении имеют малое количество В-клеток краевой зоны, и появление этих В-клеток в более поздний период жизни соответствует возникновению способности отвечать на ТІ-антигены [134].

Недавно было показано, что бактериальная ДНК, которую раньше считали иммунологически инертной, способна вызывать стимулирующий иммунный ответ [135, 136]. Бактериальная ДНК отличается от ДНК млекопитающих повышенным содержанием динуклеотидных последовательностей CpG и меньшим числом CpG-нуклеотидов, метилированных у бактерий [137]. Эти различия создают основу для распознавания чужеродной ДНК млекопитающими, способными к иммунному ответу на бактерии. У неонатальных мышей стимуляция посредством CpG-OAH, а не только перекрестное связывание В-клеточных рецепторов может индуцировать пролиферацию В-клеток. Далее, стимуляция СрG-ОДН может превзойти ареактивность неонатальных мышиных В-клеток по отношению к сигналам, генерируемым В-клеточным рецептором, т.к. низкие концентрации CpG и анти-IgM могут индуцировать сильный В-клеточный пролиферативный ответ. Нормальные неонатальные В-клетки в ответ на лигирование B-клеточного рецептора подвергаются апоптозу, а CpG-ОДН препятствуют этому процессу. Кроме того, CpG-ОДН стимулируют продукцию неонатальными В-клетками мышей поликлональных IgM в количестве, сопоставимом с количеством IgM, образуемых В-клетками взрослых мышей [81, 138].

Цитокины, необходимые для иммунного ответа организма новорожденных мышей

При исследовании ответа неонатальных В-клеток на TNP-фиколл или TNP-ЛПС как модельные TI-антигены было обнаружено, что высокоочищенные неонатальные В-клетки хорошо отвечают на эти стимулы лишь в присутствии цитокинов IL-1 и IL-6 [139]. В этой системе неонатальный ответ был сопоставим с ответом взрослых клеток. Для оптимального ответа необходимо присутствие обоих цитокинов. Авидность ответа, индуцированного TNP-фиколлом в присутствии цитокинов, была сходной у новорожденных и взрослых мышей [139]. Цитокины IL-4 и IL-5 были эффективны, когда в качестве TI-стимула использовали декстран, связанный с антителами к В-клеточному рецептору [140]. В этой системе ответ неонатальных В-клеток требовал также стимуляции через лиганд CD40. В обеих системах только одни неонатальные В-клетки не отвечали на TI-антиген. Исследования *in vivo* выявили, что цитокин IL-12 также способен усиливать ответ организма новорожденных мышей на полисахарид [141].

Эти исследования показали, что присущее неонатальным В-клеткам нарушение ответа на полисахаридные антигены может быть скорригировано с помощью соответствующей комбинации сигналов, посылаемых цитокинами и CD40. Кинетические исследования выявили, что цитокины необходимо добавить во время ранней фазы В-клеточной активации. Они способны преодолеть нарушения индуцированной через В-клеточный рецептор пролиферации неонатальных В-клеток, а также индуцированной антигеном дифференцировки [139].

Неонатальные В-клетки у мышей по своей природе относятся преимущественно к переходному типу, т.е. В-клеткам, недавно эмигрировавшим из костного мозга. В-клетки переходного типа определяются по высокому уровню IgM, низкому уровню IgD и CD23 и по экспрессии маркера АА4.1 [142, 143]. Такие переходные В-клетки недавно были идентифицированы у взрослых людей и в пуповинной крови; такие клетки присутствуют также у взрослых мышей, однако в очень малом количестве по сравнению с новорожденными мышами. Присутствие этих переходных клеток объясняет повышенную восприимчивость новорожденных животных к индукции В-клеточной толерантности и сниженный ответ на полисахаридные антигены. Интересно отметить, что переходный фенотип не изменяют цитокины IL-1 и IL-6, которые индуцируют специфичный к полисахаридам ответ неонатальных В-клеток. Было показано, что BAFF (известный также как BLyS) цитокин, принадлежащий к семейству TNF, — необходим для созревания переходных В-клеток в фолликулярные В-клетки. У трансгенных мышей, сверхэкспрессирующих ВАFF, оказалось повышенным количество В-клеток краевой зоны и В-1-клеток (две субпопуляции, участвующие в ответе на полисахариды), и такие мыши продуцировали аутоантитела [144]. У взрослых животных добавление ВАFF усиливало продукцию антител к пневмококковым полисахаридам. В настоящее время исследования, в которых изучали бы эффект ВАFF на ответ неонатальных В-клеток, отсутствуют.

Стимуляция иммунного ответа организма мышей с помощью CpG

Установлено, что олигонуклеотиды, содержащие CpG-мотивы, являются мощными стимуляторами иммунного ответа благодаря действию на В-клетки, дендритные клетки и макрофаги. Была исследована возможность СрG-стимуляции преодолеть ареактивность неонатальных В-клеток к перекрестному связыванию В-клеточных рецепторов или к полисахаридным антигенам. Установлено, что добавление CpG позволяло неонатальным мышиным B-клеткам пролиферировать в ответ на антитела анти-IgM. Кроме того, в результате CpG-стимуляции неонатальные В-клетки приобретали способность продуцировать антитела к TNP-фиколлу, полисахаридному TI-2-антигену. СрG влияет на выживаемость В-клеток, о чем свидетельствуют данные определения апоптоза и уровня белков выживаемости, например Bcl-X_L [138]. В этих экспериментах использовали высокоочищенные неонатальные В-клетки, что говорит о прямом действии CpG-OДH непосредственно на В-клетки через рецептор TLR9. Kovarik и соавт. исследовали влияние СрG-ОДН на иммунизацию полисахаридом in vivo, отметив лишь ограниченный адъювантный эффект [145], что могло быть связано с периодом полужизни CpG in vivo.

Секреция цитокинов макрофагами

Как было указано ранее, для TI-ответа нужны и макрофаги, и В-клетки. Роль макрофагов исследовали в экспериментах с клеточными смесями, когда взрослые В-клетки культивировали с очищенными макрофагами, полученными у новорожденных или взрослых мышей при TI-стимуляции (TNP-ЛПС). В этой системе неонатальные макрофаги не давали хелперного эффекта в отношении ответа на TIантиген, тогда как взрослые макрофаги способствовали полноценной продукции антител В-клетками. Указанный дефект хелперной функции неонатальных макрофагов обусловлен сниженной секрецией двух цитокинов — IL-1 и IL-6, играющих важную роль в В-клеточной активации. Оказалось, что неонатальные макрофаги имеют общий дефект продукции провоспалительных цитокинов, т.к. образуют меньшие количества $TNF-\alpha$ и IL-12, чем взрослые макрофаги, при стимуляции TNP- $\Lambda\Pi$ C. Следует отметить, что продукция противовоспалительного цитокина IL-10 неонатальными мышиными макрофагами не снижена, а даже повышена по сравнению со взрослыми клетками. Такое повышенное образование IL-10 неонатальными макрофагами является причиной сниженной продукции провоспалительных цитокинов, поскольку секреция IL-1, IL-6 и TNF-α восстанавливается, если в культуру добавляют антитела к IL-10 или когда неонатальные макрофаги получают от нокаутных по гену IL-10 мышей. Антитела к IL-10 не только восстанавливают продукцию IL-6 неонатальными макрофагами, но также делают неонатальные клетки селезенки способными синтезировать антитела к TNP- Λ ПС в культуре [146, 147].

Недавно было установлено, что такие митогенные стимулы, как бактериальные $\Lambda\Pi C$, распознаются членами семейства Toll-подобных рецепторов, в частности TLR4. Многие лиганды TLR имеют бактериальное происхождение. Например, пептидогликан стимулирует TLR2, бактериальный флагеллин — TLR5, а бактериальная ДНК, содержащая мотивы CpG, — TLR9. Для неонатальных макрофагов характерно подобное нарушение регуляции цитокинов независимо от того, идет ли речь о стимуляции лигандом TLR2, пептидогликаном или лигандом TLR9, CpG-OAH. Это указывает на общий дефект сигнализации через TLR, приводящий к снижению экспрессии провоспалительных цитокинов и повышению экспрессии противовоспалительных цитокинов, включая IL-10. Экспрессия рецепторов TLR неонатальными макрофагами сама по себе уменьшается не столь резко, хотя существуют определенные количественные различия между двумя возрастными группами. Молекулярная основа нарушения регуляции цитокинов у неонатальных макрофагов до сих пор неизвестна. Удивителен факт, что макрофаги двухлетних мышей обладают подобным фенотипом нарушения регуляции и неспособны к такой же продукции антител при введении TNP-AПС, как молодые взрослые В-клетки [147]. Старые мыши и пожилые люди также гипореактивны к пневмококковым полисахаридным антигенам.

КОРРЕЛЯЦИЯ НЕОНАТАЛЬНЫХ ПОКАЗАТЕЛЕЙ ИММУННОГО ОТВЕТА ОРГАНИЗМОВ ЧЕЛОВЕКА И МЫШИ

Основываясь на данных, полученных в экспериментах на мышах, вмешательства, модифицирующие иммунный ответ организма неонатальных мышей, были рассмотрены применительно к новорожденным

детям [18, 20, 21, 100, 148–151]. Наиболее часто источником клеток новорожденных детей для исследовательских целей была пуповинная кровь, однако иногда использовали и периферическую кровь новорожденных детей. Популяции иммунных клеток исследовали либо в составе цельной крови [19], либо специфические популяции отделяли от других клеток различными методами, например с помощью градиента плотности [20, 21, 151], применяя флюоресцентные антитела к поверхностным маркерам и проточную цитометрию, магнитные антитела к поверхностным маркерам, позволяющие разделять клетки в сильном магнитном поле [18, 20], или используя клетки, обладающие собственными адгезивными свойствами [151]. Далее будут рассмотрены наиболее современные методы, имеющие потенциальное клиническое значение для работы с новорожденными детьми.

Вспомогательные клетки

Большое количество исследований было посвящено изучению эффектов глюкокортикостероидов на иммунный ответ организма мышей. Продукция макрофагов и их функции у мышей изменяются под влиянием стероидов по-разному в зависимости от времени введения и последовательности процессинга антигена и глюкокортикостероидов [152-159]. Введение глюкокортикостероидов самкам мышей после рождения потомства снижает передачу вирус-специфических IgG с молоком [160]. Функции неонатальных макрофагов человека и экспрессию поверхностных маркеров исследовали Orlikowsky и соавт. в двух работах. Показано, что макрофаги пуповинной крови в меньшей степени экспрессируют конститутивные маркеры активации CD80 и CD86; экспрессия этих маркеров возрастает не столь значительно, как у взрослых, при стимуляции циклическим аденозинмонофосфатом или лигандом CD40 (связывается с молекулой CD40 на B-клетках и стимулирует рост и созревание В-лимфоцитов) [161, 162]. Исследовали действие дексаметазона на макрофаги пуповинной крови, чтобы определить, как стероиды, введенные беременным женщинам в случае преждевременных родов, могут повлиять на иммунный ответ организма недоношенных детей [151]. Макрофаги пуповинной крови стимулировали IFN-у или циклическим аденозинмонофосфатом с добавлением или без добавления дексаметазона. Установлено, что базовый уровень экспрессии CD80 и CD86 был сниженным; стимуляция IFN-γ повышала уровень экспрессии этих молекул, однако в меньшей степени, чем это наблюдалось у взрослых макрофагов. Добавление дексаметазона ингибировало повышение экспрессии, вызванное стимуляцией как взрослых клеток, так и макрофагов пуповинной крови, однако в последнем случае ингибиция была сильнее. При стимуляции циклическим аденозинмонофосфатом обнаружен сходный эффект, за исключением того, что экспрессия CD80 не возрастала в отличие от CD86 (в большей степени не возрастала у макрофагов взрослых, чем у макрофагов пуповинной крови); обработка дексаметазоном также ингибировала эффект (ингибиция ответа была сильнее у макрофагов пуповинной крови по сравнению с макрофагами взрослых) [151]. Эти исследования показывают, что введение беременным женщинам дексаметазона в случае преждевременных родов может снизить способность макрофагов новорожденных активироваться при стимуляции воспалительными цитокинами. Вследствие этого неонатальные макрофаги, и без того находясь в относительно неактивированном состоянии, будут менее способны отвечать на инфекцию фагоцитозом микроорганизмов и секрецией цитокинов, необходимых для клеточного и гуморального иммунных ответов.

Дифференцировка и функции дендритных клеток мышей также изменяются при воздействии стероидов [158, 159, 163, 164]. В исследованиях с участием людей Mainali и соавт. изучали влияние дексаметазона на созревание дендритных клеток пуповинной крови и крови взрослых людей [150]. Обнаружено, что дексаметазон ингибирует экспрессию поверхностного маркера дендритных клеток (CD1a) и повышает экспрессию маркера макрофагов (CD14). Эти изменения были более выражены в клетках пуповинной крови. Дексаметазон изменял соотношение секреции цитокинов дендритными клетками и макрофагами таким образом, что секреция IL-10 (противовоспалительного цитокина) превосходила секрецию IL-12 (провоспалительного цитокина). У тех же клеток пуповинной крови, экспрессирующих маркер макрофагов CD14, под влиянием дексаметазона повышалась способность к эндоцитозу [150]. Эти данные показывают, что у новорожденных, получавших стероиды либо родившихся от матерей, которым вводили стероиды, уменьшен пул дендритных клеток, презентирующих антигены наивным Т-клеткам, в результате сохранения клеток моноцитарной линии и отсутствия их созревания в дендритные клетки.

Дендритные клетки фагоцитируют апоптотические и некротические клетки, и в зависимости от типа поглощенных клеток возникает либо иммунный ответ (некротические клетки), либо толерантность (апоптотические клетки). Толерантность — это состояние ареактивности к антигену, даже если ранее был контакт с этим антигеном. Толерантность к аутоантигенам имеет большое значение для предотвращения аутоиммунных заболеваний [40]. Wong и соавт. исследовали ответ неонатальных ДК на погибающие клетки двух типов, сравнивая его с ответом взрослых ДК [100]. И те и другие ДК оказались способными фагоцитировать апоптотические и некротические клетки, однако взрослые ДК фагоцитировали большие количества каждого типа погибающих клеток. Повышение экспрессии молекул ГКГС класса II, CD80, CD86 и CD83 у ДК пуповинной крови было минимальным, тогда как у взрослых ΔK , фагоцитировавших некротические клетки, повышение оказалось значительным. Стимулированные ДК вызывали активацию наивных Т-клеток; однако ДК пуповинной крови при воздействии некротических клеток или ЛПС были менее способны стимулировать пролиферацию Т-клеток по сравнению со взрослыми ΔK . Стимуляция посредством $\Lambda\Pi C$ повышала экспрессию молекул $\Gamma K\Gamma C$ класса II, CD80, CD86, CD83 и CD40 как взрослыми ДК, так и ДК пуповинной крови, однако во втором случае это повышение было слабее.

Цитокины, продуцируемые ΔK при стимуляции (TNF- α , IL-10 и IL-12p70), играют важную роль в модуляции типа Т-клеточного ответа. Дендритные клетки пуповинной крови оказались способны повышать секрецию TNF- α и IL-10, однако в меньшей степени, чем взрослые ΔK . У взрослых ΔK , но не у ΔK пуповинной крови количество секретируемого IL-12p70 существенно повышено [100]. Известно, что продукция IL-12 усиливает дифференцировку Th1-клеток, тогда как IL-10 способен снижать развитие Th1-ответа. Склонность новорожденных детей к Th2-ответу может быть связана с этой особенностью фенотипа ΔK . Эти исследования можно считать одними из первых, посвященных изучению роли вспомогательных клеток у новорожденных детей.

В-лимфоциты

Синтетические СрG-ОДН индуцируют пролиферацию, продукцию цитокинов и иммуноглобулинов В-лимфоцитами и дендритными клетками мышей [136, 165–168]. Стимулирующий эффект у мышей зависит от присутствия СрG-динуклеотидной последовательности так же, как от окружающих нуклеотидов, фланкированных двумя 5'-пуринами и 3'-пиримидинами (СрG-мотив) [135, 169, 170]. Взрослые В-клетки человека также могут быть стимулированы олигодезоксинуклеотидами, однако СрG-мотив, обязательный для активации В-клеток мышей, не является необходимым для В-клеток человека [171].

СрG-ОДН можно классифицировать по типу клеток, которые они способны стимулировать. Некоторые CpG-OДH, действуя на высокоочищенные В-клетки взрослого человека, индуцируют пролиферацию, продукцию IgM, IgG и IgA и повышенную экспрессию поверхностных молекул CD86 (маркер В-клеточной активации) и CD25 (рецептор IL-2) [171]. Максимальную стимуляцию В-клеток человека (клеточная пролиферация, экспрессия CD80 и CD86, продукция Ig и секреция IL-6) вызывают олигодезоксинуклеотиды, обладающие резистентной к нуклеазам фосфоротиоат-модифицированной основой с одним или несколькими СрG-мотивами и отсутствием поли-Gмотива [172]. СрG-ОДН, индуцирующие Th1-ответ, а также сильно стимулирующие В-клетки, относятся к классу В (или типу К), тогда как класс A (или тип D) характеризуется способностью сильно активировать EK-клетки и секрецию IFN-α плазмоцитоидными ΔK человека [173–175]. Третий класс СрG (класс С) сочетает свойства классов А и В: способность стимулировать В-клетки, активировать ЕК-клетки и продукцию IFN-α [176, 177]. CpG-ОДН класса В усиливают способность дендритных клеток продуцировать IL-12 и способствуют поляризации Т-клеточного ответа в направлении Th1. Некоторые CpG-OAH проходят клинические испытания по усилению иммунного ответа при вакцинации против инфекций и раковых клеток [178–181].

Данные, полученные в животных моделях на мышах, позволили рассмотреть возможность усиления иммунного В-клеточного ответа новорожденных детей с помощью CpG-OДH. В одной из работ было показано, что у В-лимфоцитов пуповинной крови и дендритных клеток в культуре цельной крови возрастает экспрессия СD40 в ответ на стимуляцию СрG, однако не так эффективно, как у взрослых [182]. СрG-ОДН способны стимулировать пролиферацию В-клеток пуповинной крови и повышать экспрессию CD86 и HLA-DR (поверхностных молекул, играющих роль во взаимодействии Т- и В-клеток). Индуцированная CpG-OДН повышенная экспрессия поверхностных маркеров сходна у В-клеток пуповинной крови и взрослых В-клеток [18]. Пролиферация В-клеток пуповинной крови возрастает при стимуляции CpG-OДH, однако данные о том, пролиферируют ли эти клетки в такой же степени, как и взрослые В-клетки в ответ на СрG-ОДН, противоречивы [18, 20]. Этот пролиферативный эффект возрастал у В-клеток обоих типов, если к обработанным CpG-OДH клеткам добавляли анти-IgM [18]. Поликлональная продукция IgM клетками пуповинной крови в ответ на стимуляцию CpG-OДH была столь же интенсивной, как и у взрослых клеток; однако клетки пуповинной крови продуцировали меньше IgG по сравнению со взрослыми клетками и не синтезировали IgA в ответ на CpG-OДH [18, 20]. CpG-ОДН индуцировали также секрецию хемокинов В-клетками пуповинной

крови и взрослыми В-клетками (воспалительный белок макрофагов 1 α и воспалительный белок макрофагов 1 β), которая еще больше возрастала при добавлении анти-IgM [18]. Важно отметить, что иммуноглобулины, образующиеся при поликлональном В-клеточном ответе на СрG-ОДН, содержали антитела, специфичные к полисахаридным антигенам [18, 20]. До настоящего времени не установлено, способны ли СрG-ОДН амплифицировать продукцию антител к полисахаридным антигенам В-клетками, как это наблюдается при введении вакцины, а не просто вызывать поликлональный ответ, возможно вследствие неопределимого количества специфичных к полисахаридам антител или же необходимости присутствия цитокинов, секретируемых Т-лимфоцитами или вспомогательными клетками. Исследования в этой области подтверждают, что неонатальные В-клетки могут функционировать подобно взрослым, однако для максимального ответа В-клеткам пуповинной крови необходимы особые условия.

РАЗЛИЧИЯ ИММУНОРЕАКТИВНОСТИ ЧЕЛОВЕКА И МЫШИ

Селезенка новорожденных мышей в отличие от взрослых животных содержит незрелые В-клетки. При проведении исследований с участием людей обычно используют периферическую кровь новорожденных и дефицита функции лимфоцитов, как в селезенке мышей, у лимфоцитов периферической крови человека не обнаруживают [18]. В действительности В-клетки лимфоузлов мышей более зрелые, чем клетки селезенки, и спленэктомия мышей не влияет на их IgG1- и IgG2-ответ [59, 122]. В ответ на введение полисахаридных антигенов мыши преимущественно образуют антитела класса IgM, тогда как у человека это антитела IgG, IgA и IgM [183]. При TD-ответе организма новорожденных мышей образуется мало IgG2, тогда как новорожденные дети продуцируют малое количество IgG2 [73].

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ ДАННЫХ И НЕОБХОДИМОСТЬ ДАЛЬНЕЙШИХ ИССЛЕДОВАНИЙ

Идентификация специфических дефектов иммунного ответа организма новорожденных детей может определить стратегию лечения воспалительных процессов и инфекций у них. СрG-ОДН уже исследуют в экспериментах на взрослых мышах в качестве адъюванта для полисахаридных вакцин с целью повышения продукции антител в ответ на слабые антигены [184]. Существует гипотеза, что СрG-ОДН могут оказаться полезным средством при иммунизации новорожденных полисахаридными антигенами и есть возможность сделать 23-валентную вакцину из чистых полисахаридов S. *pneumoniae* (используемую сейчас для вакцинации пожилых людей) эффективной и для новорожденных. Кроме того, дальнейшее изучение стимулирующей способности СрG-ОДН у новорожденных может оказаться полезным в разработке программы вакцинации детей против N. meningitidis. Предполагается, что при использовании CpG-OДH, необходим второй стимул для повышения специфического ответа на антиген, т.к. применение только CpG-OAH в лабораторных условиях не увеличивает количество полисахаридного антигена в пуповинной крови.

В настоящее время для лечения инфекций и воспалительных процессов у новорожденных в распоряжении врачей, кроме антибио-

тиков и поддерживающей терапии, имеются ограниченные средства. Предприняты многочисленные попытки исследовать у взрослых пациентов роль антагонистов цитокинов и других противовоспалительных агентов в лечении септического шока [185–188]. Однако поскольку продукция цитокинов у новорожденных отличается от таковой у взрослых, могут понадобиться другие терапевтические подходы для новорожденных. Поскольку иммунный ответ организма новорожденных относительно супрессирован и на многие инфекции они неспособны дать адекватный иммунный ответ, более благоприятный эффект может быть получен с помощью стимулирующих цитокинов, а не противовоспалительных средств, используемых у взрослых. Кроме того, иммунная система недоношенных детей отличается даже от иммунной системы детей, родившихся в срок [47, 95, 97, 108, 111, 118, 162, 189-194]. Например, базовая концентрация ІС-8 не зависит от гестационного возраста, однако в случае преждевременных родов продукция цитокина стимулированными моноцитами пуповинной крови ниже [97, 118]. Необходимы дальнейшие исследования для определения особенностей иммунного ответа организма недоношенных детей.

ЛИТЕРАТУРА

- 1. Pereira LE, Bostik P and Ansari AA, et al.: The development of mouse APECED models provides new insight into the role of AIRE in immune regulation. *Clin Dev Immunol*. 12:2005; 211–216.
- 2. Kamnasaran D: Agenesis of the corpus callosum: lessons from humans and mice. *Clin Invest Med*. 28:2005; 267–282.
- 3. Meekins GD and Weiss MD: Electrodiagnostic studies in a murine model of demyelinating Charcot-Marie-Tooth disease. *Phys Med Rehabil Clin N Am.* 16:2005; 967–979, ix.
- 4. Nico B, Roncali L, Mangieri D and Ribatti D: Blood-brain barrier alterations in MDX mouse, an animal model of the Duchenne muscular dystrophy. *Curr Neurovasc Res.* 2:2005; 47–54.
- Gibson KM, Jakobs C, Pearl PL and Snead OC: Murine succinate semialdehyde dehydrogenase (SSADH) deficiency, a heritable disorder of GABA metabolism with epileptic phenotype. *IUBMB Life*. 57:2005; 639–644.
- 6. Ramirez F and Dietz HC: Therapy insight: aortic aneurysm and dissection in Marfan's syndrome. *Nat Clin Pract Cardiovasc Med.* 1:2004; 31–36.
- 7. Kumar S and Anderson KC: Drug insight: thalidomide as a treatment for multiple myeloma. *Nat Clin Pract Oncol.* 2:2005; 262–270.
- 8. Pomper MG and Lee JS: Small animal imaging in drug development. *Curr Pharm Des*. 11:2005; 3247–3272.
- 9. Davies J, Turner M and Klein N: The role of the collectin system in pulmonary defence. *Paediatr Respir Rev.* 2:2001; 70–75.
- 10. Doganci A, Sauer K, Karwot R and Finotto S: Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. *Clin Rev Allergy Immunol*. 28:2005; 257–270.
- 11. Chen J and Roop DR: Mouse models in preclinical studies for pachyonychia congenita. *J Investig Dermatol Symp Proc.* 10:2005; 37–46.
- 12. Raja A and Engelhard HH: Animal models of leptomeningeal cancer. *Cancer Treat Res.* 125:2005; 159–179.
- Lallemand-Breitenbach V, Zhu J and Kogan S, et al.: Opinion: how patients have benefited from mouse models of acute promyelocytic leukaemia. *Nat Rev Cancer*. 5:2005; 821–827
- 14. Keller C and Capecchi MR: New genetic tactics to model alveolar rhabdomyosarcoma in the mouse. *Cancer Res.* 65:2005; 7530–7532.
- 15. Paul R, Koedel U and Pfister HW: Development of adjunctive therapies for bacterial meningitis and lessons from knockout mice. *Neurocrit Care*. 2:2005; 313–324.
- 16. Hapfelmeier S and Hardt WD: A mouse model for S. typhimurium-induced enterocolitis. *Trends Microbiol.* 13:2005; 497–503.
- 17. Solomon JB: Immunological milestones in the ontogeny of hamster, guinea pig, sheep, and man. *Fed Proc.* 37:1978; 2028–2030.

- 18. Tasker L and Marshall-Clarke S: Functional responses of human neonatal B lymphocytes to antigen receptor cross-linking and CpG DNA. *Clin Exp Immunol*. 134:2003; 409–419.
- 19. Halista SM, Johnson-Robbins LA and El-Mohandes AE, et al.: Characterization of early activation events in cord blood B cells after stimulation with T cell-independent activators. *Pediatr Res.* 43:1998; 496–503.
- 20. Landers CD and Bondada S: CpG oligodeoxynucleotides stimulate cord blood mononuclear cells to produce immunoglobulins. *Clin Immunol*. 116:2005; 236–245.
- 21. Prescott SL, Irwin S and Taylor A, et al.: Cytosine-phosphate-guanine motifs fail to promote T-helper type 1-polarized responses in human neonatal mononuclear cells. *Clin Exp Allergy*. 35:2005; 358–366.
- 22. Pabst HF and Kreth HW: Ontogeny of the immune response as a basis of childhood disease. *J Pediatr.* 97:1980; 519–534.
- 23. Douglas RM, Paton JC, Duncan SJ and Hansman DJ: Antibody response to pneumococcal vaccination in children younger than five years of age. *J Infect Dis.* 148:1983; 131–137.
- 24. Broome CV and Breiman RF: Pneumococcal vaccine-past, present, and future. *N Engl J Med*. 325:1991; 1506–1508.
- 25. Delves PJ and Roitt IM: The immune system. First of two parts. *N Engl J Med.* 343:2000; 37–49.
- 26. Wald ER, Guerra N and Byers C: Upper respiratory tract infections in young children: duration of and frequency of complications. *Pediatrics*. 87:1991; 129–133.
- 27. Gray BM and Dillon HC: Clinical and epidemiologic studies of pneumococcal infection in children. *Pediatr Infect Dis.* 5:1986; 201–207.
- 28. Klein JO: The epidemiology of pneumococcal disease in infants and children. *Rev Infect Dis.* 3:1981; 246–253.
- 29. Cadoz M: Potential and limitations of polysaccharide vaccines in infancy. *Vaccine*. 16:1998; 1391–1395.
- 30. Peter G and Klein JO: Streptococcus pneumoniae. In: Long SS, ed. Principles and practice of pediatric infectious diseases. 2003; edn 2nd New York: Churchill Livingstone; 739–746.
- 31. Kaplan SL, Mason EO and Wald ER, et al.: Decrease of invasive pneumococcal infections in children among 8 children's hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. *Pediatrics*. 113:2004; 443–449.
- 32. Dintzis RZ: Rational design of conjugate vaccines. *Pediatr Res.* 32:1992; 376–385.
- 33. Seppala I and Makela O: Antigenicity of dextran-protein conjugates in mice. Effect of molecular weight of the carbohydrate and comparison of two modes of coupling. *J Immunol.* 143:1989; 1259–1264.
- 34. Bixler GS, Eby R and Dermody KM, et al.: Synthetic peptide representing a T-cell epitope of CRM197 substitutes as carrier molecule in a Haemophilus influenzae type B (Hib) conjugate vaccine. *Adv Exp Med Biol.* 251:1989; 175–180.
- 35. Tai JY, Vella PP and McLean AA, et al.: Haemophilus influenzae type b polysaccharide-protein conjugate vaccine. *Proc Soc Exp Biol Med*. 184:1987; 154–161.
- 36. Jennings HJ, Roy R and Gamian A: Induction of meningococcal group B polysaccharide-specific IgG antibodies in mice by using an N-propionylated B polysaccharide-tetanus toxoid conjugate vaccine. *J Immunol*. 137:1986; 1708–1713.
- 37. Tsay GC and Collins MS: Preparation and characterization of a nontoxic polysaccharide-protein conjugate that induces active immunity and passively protective antibody against Pseudomonas aeruginosa immunotype 1 in mice. *Infect Immun.* 45:1984; 217–221.
- 38. Gold R. Neisseria meningitidis. In: Long SS, ed. Principles and practice of pediatric infectious diseases (2nd edn). New York: Churchill Livingstone; 2003:748–756.
- 39. Pediatrics AA: Meningococcal Infections. In: Pickering LK, ed. Red Book: Report of the Committee on Infectious Diseases. 2003; edn 26th Elk Grove Village, IL: American Academy of Pediatrics; 430–436.
- Delves PJ and Roitt IM: The immune system. Second of two parts. N Engl J Med. 343:2000; 108–117.
- 41. Engle WA, Schreiner RL and Baehner RL: Neonatal white blood cell disorders. *Semin Perinatol*. 7:1983; 184–200.
- 42. Krause PJ, Maderazo EG and Scroggs M: Abnormalities of neutrophil adherence in newborns. *Pediatrics*. 69:1982; 184–187.
- 43. Krause PJ, Malech HL and Kristie J, et al.: Polymorphonuclear leukocyte heterogeneity in neonates and adults. *Blood*. 68:1986; 200–204.
- 44. Anderson DC, Hughes BJ and Smith CW: Abnormal mobility of neonatal polymorphonuclear leukocytes. Relationship to impaired redistribution of surface adhesion sites by chemotactic factor or colchicine. *J Clin Invest*. 68:1981; 863–874.
- 45. Anderson DC, Rothlein R and Marlin SD, et al.: Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CD11b/CD18)-dependent adherence reactions. *Blood*. 76:1990; 2613–2621.

- 46. Abughali N, Berger M and Tosi MF: Deficient total cell content of CR3 (CD11b) in neonatal neutrophils. *Blood*. 83:1994; 1086–1092.
- 47. McEvoy LT, Zakem-Cloud H and Tosi MF: Total cell content of CR3 (CD11b/CD18) and LFA-1 (CD11a/CD18) in neonatal neutrophils: relationship to gestational age. *Blood*. 87:1996; 3929–3933.
- 48. Bruce MC, Baley JE, Medvik KA and Berger M: Impaired surface membrane expression of C3bi but not C3b receptors on neonatal neutrophils. *Pediatr Res.* 21:1987; 306–311.
- 49. Quie PG and Mills EL: Bactericidal and metabolic function of polymorphonuclear leukocytes. *Pediatrics*. 64:1979; 719–721.
- 50. Speer C, Johnston RBJ. Neutrophil function in newborn infants. In: Polin R, Fox W, eds. Fetal and neonatal physiology (2nd edn). Philadelphia: W.B. Saunders; 1997:1954–1960.
- 51. Davis CA, Vallota EH and Forristal J: Serum complement levels in infancy: age related changes. *Pediatr Res.* 13:1979; 1043–1046.
- 52. Mills EL, Thompson T and Bjorksten B, et al.: The chemiluminescence response and bactericidal activity of polymorphonuclear neutrophils from newborns and their mothers. *Pediatrics*. 63:1979; 429–434.
- 53. Stoerner JW, Pickering LK, Adcock EW and Morriss FH: Polymorphonuclear leukocyte function in newborn infants. *J Pediatr*. 93:1978; 862–864.
- 54. Tono-Oka T, Nakayama M, Uehara H and Matsumoto S: Characteristics of impaired chemotactic function in cord blood leukocytes. *Pediatr Res.* 13:1979; 148–151.
- 55. Miller MD: Natural defense mechanism: Development and characterization of innate immunity. In: Stiehm E and Fulginiti V, eds, *Immunologic disorders of infants and children*. 1973; Philadelphia: W.B. Saunders; 127.
- Abbas AK, Lichtman AH, Pober JS. B cell Activation and antibody production. In Schmitt W, Hacker HN, Ehlers J, eds. Cellular and molecular immunology (4th edn). Philadelphia: W.B. Saunders; 2000:182–207.
- 57. Prescott SL, Macaubas C and Smallacombe T, et al.: Development of allergen-specific T-cell memory in atopic and normal children. *Lancet*. 353:1999; 196–200.
- 58. Prescott SL, Taylor A and King B, et al.: Neonatal interleukin-12 capacity is associated with variations in allergen-specific immune responses in the neonatal and postnatal periods. *Clin Exp Allergy*. 33:2003; 566–572.
- Adkins B, Leclerc C and Marshall-Clarke S: Neonatal adaptive immunity comes of age. Nat Rev Immunol. 4:2004; 553–564.
- 60. Hussey GD, Watkins ML and Goddard EA, et al.: Neonatal mycobacterial specific cytotoxic T-lymphocyte and cytokine profiles in response to distinct BCG vaccination strategies. *Immunology*. 105:2002; 314–324.
- 61. Vekemans J, Amedei A and Ota MO, et al.: Neonatal bacillus Calmette-Guerin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. *Eur J Immunol*. 31:2001; 1531–1535.
- 62. Prescott SL, Macaubes C and Yabuhara A, et al.: Developing patterns of T cell memory to environmental allergens in the first two years of life. *Int Arch Allergy Immunol*. 113:1997; 75–79.
- 63. Prescott SL, Macaubas C and Holt BJ, et al.: Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. *J Immunol*. 160:1998; 4730–4737.
- 64. Marchant A, Appay V and Van Der Sande M, et al.: Mature CD8(+) T lymphocyte response to viral infection during fetal life. *J Clin Invest*. 111:2003; 1747–1755.
- 65. Hermann E, Truyens C and Alonso-Vega C, et al.: Human fetuses are able to mount an adultlike CD8 T-cell response. *Blood*. 100:2002; 2153–2158.
- 66. Morell A, Skvaril F, Hitzig WH and Barandun S: IgG subclasses: development of the serum concentrations in "normal" infants and children. *J Pediatr.* 80:1972; 960–964.
- Oxelius VA: IgG subclass levels in infancy and childhood. Acta Paediatr Scand. 68:1979; 23–27.
- 68. Rijkers GT, Sanders EA, Breukels MA and Zegers BJ: Infant B cell responses to polysaccharide determinants. *Vaccine*. 16:1998; 1396–1400.
- 69. Rijkers GT, Sanders LA and Zegers BJ: Anti-capsular polysaccharide antibody deficiency states. *Immunodeficiency*. 5:1993; 1–21.
- 70. Schur PH, Rosen F and Norman ME: Immunoglobulin subclasses in normal children. *Pediatr Res.* 13:1979; 181–183.
- Andersson B and Blomgren H: Evidence for thymus-independent humoral antibody production in mice against polyvinylpyrrolidone and E. coli lipopolysaccharide. *Cell Immunol*. 2:1971; 411–424.
- Hale ML, Hanna EE and Hansen CT: Nude mice from homozygous nude parents show smaller PFC responses to sheep erythrocytes than nude mice from heterozygous mothers. *Nature*. 260:1976; 44–45.

- 73. Siegrist CA: Neonatal and early life vaccinology. *Vaccine*. 19:2001; 3331–3346.
- 74. Timens W, Rozeboom T and Poppema S: Fetal and neonatal development of human spleen: an immunohistological study. *Immunology*. 60:1987; 603–609.
- Bondada S, Garg M. Thymus-independent antigens. Handbook of B and T lymphocytes. Academic Press; 1994:343–370.
- Bondada S, Wu H, Robertson DA and Chelvarajan RL: Accessory cell defect in unresponsiveness of neonates and aged to polysaccharide vaccines. Vaccine. 19:2000; 557–565.
- Mond JJ, Lees A and Snapper CM: T cell-independent antigens type 2. Annu Rev Immunol. 13:1995; 655–692.
- 78. Gathings WE, Kubagawa H and Cooper MD: A distinctive pattern of B cell immaturity in perinatal humans. *Immunol Rev.* 57:1981; 107–126.
- 79. Nossal GJ: Cellular mechanisms of immunologic tolerance. *Annu Rev Immunol.* 1:1983; 33–62.
- 80. Baker PJ: T cell regulation of the antibody response to bacterial polysaccharide antigens: an examination of some general characteristics and their implications. *J Infect Dis*. 165(Suppl 1):1992; S44–S48.
- 81. Landers CD, Chelvarajan RL and Bondada S: The role of B cells and accessory cells in the neonatal response to TI-2 antigens. *Immunol Res.* 31:2005; 25–36.
- 82. Abbas AK, Lichtman AH, Pober JS. Effector mechanisms of humoral immunity. In: Schmitt W, Hacker HN, Ehlers J, eds. Cellular and Molecular Immunology (4th edn). Philadelphia: W.B. Saunders; 2000:309–334.
- 83. Griffioen AW, Franklin SW, Zegers BJ and Rijkers GT: Expression and functional characteristics of the complement receptor type 2 on adult and neonatal B lymphocytes. *Clin Immunol Immunopathol*. 69:1993; 1–8.
- 84. Barrett DJ, Sleasman JW, Schatz DA and Steinitz M: Human anti-pneumococcal polysaccharide antibodies are secreted by the CD5- B cell lineage. *Cell Immunol*. 143:1992; 66–79.
- Brooks DA, Beckman IG and Bradley J, et al.: Human lymphocyte markers defined by antibodies derived from somatic cell hybrids. IV. A monoclonal antibody reacting specifically with a subpopulation of human B lymphocytes. *J Immunol*. 126:1981; 1373– 1377.
- 86. Ibelgaufts H (ed). COPE: Cytokines & cells online pathfinder encyclopaedia, vol 2005: Ibelgaufts H; 2006.
- 87. Saito S, Morii T and Umekage H, et al.: Expression of the interleukin-2 receptor gamma chain on cord blood mononuclear cells. *Blood*. 87:1996; 3344–3350.
- 88. Zola H, Fusco M and Macardle PJ, et al.: Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. *Pediatr Res.* 38:1995; 397–403.
- 89. Bohnsack JF and Brown EJ: The role of the spleen in resistance to infection. *Annu Rev Med.* 37:1986; 49–59.
- 90. Timens W, Boes A, Rozeboom-Uiterwijk T and Poppema S: Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response. *J Immunol*. 143:1989; 3200–3206.
- 91. Abbas AK, Lichtman AH, Pober JS. General properties of immune responses. In: Schmitt W, Hacker HN, Ehlers J, eds. Cellular and molecular immunology (4th edn). Philadelphia: W.B. Saunders; 2000:3–16.
- 92. Kruetzmann S, Rosado MM and Weber H, et al.: Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. *J Exp Med*. 197:2003; 939–945.
- 93. Graham CW, Saba TM, Lolekha S and Gotoff SP: Deficient serum opsonic activity for macrophage function in newborn infants. *Proc Soc Exp Biol Med.* 143:1973; 991–994.
- 94. Das M, Henderson T and Feig SA: Neonatal mononuclear cell metabolism: further evidence for diminished monocyte function in the neonate. *Pediatr Res.* 13:1979; 632–634.
- 95. Gessler P, Kirchmann N and Kientsch-Engel R, et al.: Serum concentrations of granulocyte colony-stimulating factor in healthy term and preterm neonates and in those with various diseases including bacterial infections. *Blood*. 82:1993; 3177–3182.
- 96. Schibler KR, Liechty KW and White WL, et al.: Defective production of interleukin-6 by monocytes: a possible mechanism underlying several host defense deficiencies of neonates. *Pediatr Res.* 31:1992; 18–21.
- 97. Schibler KR, Liechty KW, White WL and Christensen RD: Production of granulocyte colony-stimulating factor in vitro by monocytes from preterm and term neonates. *Blood*. 82:1993; 2478–2484.
- 98. Pillay V, Savage N and Laburn H: Circulating cytokine concentrations and cytokine production by monocytes from newborn babies and adults. *Pflugers Arch.* 428:1994; 197–201.

0

- 99. Kapenberg ML, Jansen MM. Antigen presentation and immunoregulation. In: Adkinson MF, Yunginger JW, Busse WW, et al., eds. Middleton's allergy: principles and practice (6th edn). Philidelphia: Mosby; 2003:178.
- 100. Wong OH, Huang FP and Chiang AK: Differential responses of cord and adult blood-derived dendritic cells to dying cells. *Immunology*. 116:2005; 13–20.
- 101. Joyner JL, Augustine NH and Taylor KA, et al.: Effects of group B streptococci on cord and adult mononuclear cell interleukin-12 and interferon-gamma mRNA accumulation and protein secretion. *J Infect Dis.* 182:2000; 974–977.
- 102. Goriely S, Vincart B and Stordeur P, et al.: Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. *J Immunol*. 166:2001; 2141–2146.
- 103. Upham JW, Lee PT and Holt BJ, et al.: Development of interleukin-12-producing capacity throughout childhood. *Infect Immun.* 70:2002; 6583–6588.
- 104. Stefanovic V, Golubovic E, Vlahovic P and Mitic-Zlatkovic M: Age-related changes in IL-12 production by peripheral blood mononuclear cells (PBMC). J Intern Med. 243:1998; 83–84.
- 105. Langrish CL, Buddle JC, Thrasher AJ and Goldblatt D: Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. *Clin Exp Immunol*. 128:2002; 118–123.
- 106. Marodi L, Goda K, Palicz A and Szabo G: Cytokine receptor signalling in neonatal macrophages: defective STAT-1 phosphorylation in response to stimulation with IFNgamma. Clin Exp Immunol. 126:2001; 456–460.
- De Wit D, Olislagers V and Goriely S, et al.: Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. *Blood*. 103:2004; 1030–1032.
- Bessler H, Komlos L and Punsky I, et al.: CD14 receptor expression and lipopolysaccharide-induced cytokine production in preterm and term neonates. *Biol Neonate*. 80:2001; 186–192.
- 109. Hebra A, Strange P and Egbert JM, et al.: Intracellular cytokine production by fetal and adult monocytes. *J Pediatr Surg.* 36:2001; 1321–1326.
- 110. Peters AM, Bertram P, Gahr M and Speer CP: Reduced secretion of interleukin-1 and tumor necrosis factor-alpha by neonatal monocytes. *Biol Neonate*. 63:1993; 157–162.
- Weatherstone KB and Rich EA: Tumor necrosis factor/cachectin and interleukin-1 secretion by cord blood monocytes from premature and term neonates. *Pediatr Res.* 25:1989; 342–346.
- 112. Cohen L, Haziot A and Shen DR, et al.: CD14-independent responses to LPS require a serum factor that is absent from neonates. *J Immunol*. 155:1995; 5337–5342.
- 113. Glover DM, Brownstein D and Burchett S, et al.: Expression of HLA class II antigens and secretion of interleukin-1 by monocytes and macrophages from adults and neonates. *Immunology*. 61:1987; 195–201.
- 114. Muller K, Zak M and Nielsen S, et al.: In vitro cytokine production and phenotype expression by blood mononuclear cells from umbilical cords, children and adults. *Pediatr Allergy Immunol*. 7:1996; 117–124.
- 115. Berner R, Csorba J and Brandis M: Different cytokine expression in cord blood mononuclear cells after stimulation with neonatal sepsis or colonizing strains of Streptococcus agalactiae. *Pediatr Res.* 49:2001; 691–697.
- 116. Schultz C, Rott C and Temming P, et al.: Enhanced interleukin-6 and interleukin-8 synthesis in term and preterm infants. *Pediatr Res.* 51:2002; 317–322.
- 117. Karlsson H, Hessle C and Rudin A: Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. *Infect Immun*. 70:2002; 6688–6696.
- 118. Dembinski J, Behrendt D and Heep A, et al.: Cell-associated interleukin-8 in cord blood of term and preterm infants. *Clin Diagn Lab Immunol*. 9:2002; 320–323.
- 119. Bryson YJ, Winter HS and Gard SE, et al.: Deficiency of immune interferon production by leukocytes of normal newborns. *Cell Immunol*. 55:1980; 191–200.
- 120. Hartel C, Adam N and Strunk T, et al.: Cytokine responses correlate differentially with age in infancy and early childhood. *Clin Exp Immunol*. 142:2005; 446–453.
- 121. Schultz C, Temming P and Bucsky P, et al.: Immature anti-inflammatory response in neonates. *Clin Exp Immunol*. 135:2004; 130–136.
- 122. Adkins B, Williamson T, Guevara P and Bu Y: Murine neonatal lymphocytes show rapid early cell cycle entry and cell division. *J Immunol*. 170:2003; 4548–4556.
- 123. Adkins B, Bu Y, Vincek V and Guevara P: The primary responses of murine neonatal lymph node CD4+ cells are Th2-skewed and are sufficient for the development of Th2-biased memory. *Clin Dev Immunol*. 10:2003; 43–51.
- 124. Ridge JP, Fuchs EJ and Matzinger P: Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. *Science*. 271:1996; 1723–1726.
- 125. Winkler S, Willheim M and Baier K, et al.: Frequency of cytokine-producing T cells in patients of different age groups with Plasmodium falciparum malaria. *J Infect Dis*. 179:1999; 209–216.

- 126. Adkins B, Bu Y and Guevara P: Murine neonatal CD4+ lymph node cells are highly deficient in the development of antigen-specific Th1 function in adoptive adult hosts. *J Immunol*. 169:2002; 4998–5004.
- 127. Qureshi MH and Garvy BA: Neonatal T cells in an adult lung environment are competent to resolve Pneumocystis carinii pneumonia. *J Immunol*. 166:2001; 5704–5711.
- King LB, Norvell A and Monroe JG: Antigen receptor-induced signal transduction imbalances associated with the negative selection of immature B cells. *J Immunol*. 162:1999; 2655–2662.
- 129. Marshall-Clarke S, Tasker L and Parkhouse RM: Immature B lymphocytes from adult bone marrow exhibit a selective defect in induced hyperexpression of major histocompatibility complex class II and fail to show B7.2 induction. *Immunology*. 100:2000; 141– 151.
- 130. Benschop RJ, Brandl E, Chan AC and Cambier JC: Unique signaling properties of B cell antigen receptor in mature and immature B cells: implications for tolerance and activation. *J Immunol*. 167:2001; 4172–4179.
- 131. Balazs M, Martin F, Zhou T and Kearney J: Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. *Immunity*. 17:2002; 341–352.
- 132. Martin F and Kearney JF: Marginal-zone B cells. Nat Rev Immunol. 2:2002; 323-335.
- 133. Wardemann H, Boehm T, Dear N and Carsetti R: B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. *J Exp Med*. 195:2002; 771–780.
- 134. Mosier DE and Johnson BM: Ontogeny of mouse lymphocyte function. II. Development of the ability to produce antibody is modulated by T lymphocytes. *J Exp Med*. 141:1975; 216–226.
- 135. Klinman DM, Yi AK and Beaucage SL, et al.: CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA. 93:1996; 2879–2883.
- 136. Krieg AM, Yi AK and Matson S, et al.: CpG motifs in bacterial DNA trigger direct B-cell activation. *Nature*. 374:1995; 546–549.
- Bird AP: CpG-rich islands and the function of DNA methylation. Nature. 321:1986; 209–213.
- 138. Chelvarajan RL, Raithatha R and Venkataraman C, et al.: CpG oligodeoxynucleotides overcome the unresponsiveness of neonatal B cells to stimulation with the thymus-independent stimuli anti-IgM and TNP-Ficoll. *Eur J Immunol*. 29:1999; 2808–2818.
- Chelvarajan RL, Gilbert NL and Bondada S: Neonatal murine B lymphocytes respond to polysaccharide antigens in the presence of IL-1 and IL-6. *J Immunol*. 161:1998; 3315– 3324.
- Snapper CM, Rosas FR, Moorman MA and Mond JJ: Restoration of T cell-independent type 2 induction of Ig secretion by neonatal B cells in vitro. *J Immunol*. 158:1997; 2731– 2735
- 141. Buchanan RM, Arulanandam BP and Metzger DW: IL-12 enhances antibody responses to T-independent polysaccharide vaccines in the absence of T and NK cells. *J Immunol*. 161:1998; 5525–5533.
- 142. Allman D, Lindsley RC and DeMuth W, et al.: Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. *J Immunol*. 167:2001; 6834–6840.
- 143. Loder F, Mutschler B and Ray RJ, et al.: B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. *J Exp Med*. 190:1999; 75–89.
- 144. Gavin AL, Duong B and Skog P, et al.: deltaBAFF, a splice isoform of BAFF, opposes full-length BAFF activity in vivo in transgenic mouse models. *J Immunol*. 175:2005; 319–328.
- 145. Kovarik J, Bozzotti P and Tougne C, et al.: Adjuvant effects of CpG oligodeoxynucleotides on responses against T-independent type 2 antigens. *Immunology*. 102:2001; 67–76.
- 146. Chelvarajan L, Popa D, Liu Y, et al.: Molecular mechanisms underlying anti-inflammatory phenotype of neonatal splenic macrophages. *J Leukoc Biol*. 82:2007; 403–416.
- 147. Chelvarajan RL, Collins SM, Van Willigen JM and Bondada S: The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function. *J Leukoc Biol.* 77:2005; 503–512.
- 148. Li L, Godfrey WR and Porter SB, et al.: CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. *Blood*. 106:2005; 3068–3073.
- 149. Forster-Waldl E, Sadeghi K and Tamandl D, et al.: Monocyte toll-like receptor 4 expression and LPS-induced cytokine production increase during gestational aging. *Pediatr Res.* 58:2005; 121–124.

0

- Mainali ES, Kikuchi T and Tew JG: Dexamethasone inhibits maturation and alters function of monocyte-derived dendritic cells from cord blood. *Pediatr Res.* 58:2005; 125–131.
- 151. Orlikowsky TW, Dannecker GE and Spring B, et al.: Effect of dexamethasone on B7 regulation and T cell activation in neonates and adults. *Pediatr Res.* 57:2005; 656–661.
- 152. Szakacs J, Lazar G, Lazar G and Husztik E: The effect of the glucocorticoid Oradexon on endotoxin-induced peritoneal cell response. *Acta Physiol Hung.* 87:2000; 161–166.
- 153. Mlambo G and Sigola LB: Rifampicin and dexamethasone have similar effects on macrophage phagocytosis of zymosan, but differ in their effects on nitrite and TNF-alpha production. *Int Immunopharmacol*. 3:2003; 513–522.
- 154. Willment JA, Lin HH and Reid DM, et al.: Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. *J Immunol*. 171:2003; 4569–4573.
- 155. Bradley LM and Mishell RI: Differential effects of glucocorticosteroids on the functions of helper and suppressor T lymphocytes. *Proc Natl Acad Sci USA*. 78:1981; 3155–3159.
- 156. Evans GF and Zuckerman SH: Glucocorticoid-dependent and -independent mechanisms involved in lipopolysaccharide tolerance. *Eur J Immunol.* 21:1991; 1973–1979.
- 157. Calandra T, Bernhagen J and Metz CN, et al.: MIF as a glucocorticoid-induced modulator of cytokine production. *Nature*. 377:1995; 68–71.
- 158. Kitajima T, Ariizumi K, Bergstresser PR and Takashima A: A novel mechanism of glucocorticoid-induced immune suppression: the inhibition of T cell-mediated terminal maturation of a murine dendritic cell line. *J Clin Invest*. 98:1996; 142–147.
- 159. Pan J, Ju D and Wang Q, et al.: Dexamethasone inhibits the antigen presentation of dendritic cells in MHC class II pathway. *Immunol Lett.* 76:2001; 153–161.
- 160. Yorty JL, Schultz SA and Bonneau RH: Postpartum maternal corticosterone decreases maternal and neonatal antibody levels and increases the susceptibility of newborn mice to herpes simplex virus-associated mortality. J Neuroimmunol. 150:2004; 48–58.
- 161. Abbas AK, Lichtman AH, Pober JS. Lymphocyte maturation and expression of antigen receptor genes. In: Schmitt W, Hacker HN, Ehlers J, eds. Cellular and molecular immunology (4th edn). Philadelphia: W.B. Saunders; 2000:125–160.
- 162. Orlikowsky TW, Spring B and Dannecker GE, et al.: Expression and regulation of B7 family molecules on macrophages (MPhi) in preterm and term neonatal cord blood and peripheral blood of adults. *Cytometry B Clin Cytom.* 53:2003; 40–47.
- 163. Hoetzenecker W, Meingassner JG and Ecker R, et al.: Corticosteroids but not pimecrolimus affect viability, maturation and immune function of murine epidermal Langerhans cells. *J Invest Dermatol*. 122:2004; 673–684.
- 164. Aberer W, Stingl L, Pogantsch S and Stingl G: Effect of glucocorticosteroids on epidermal cell-induced immune responses. *J Immunol.* 133:1984; 792–797.
- 165. Hartmann G and Krieg AM: CpG DNA and LPS induce distinct patterns of activation in human monocytes. *Gene Ther.* 6:1999; 893–903.
- 166. Hartmann G, Weiner GJ and Krieg AM: CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA. 96:1999; 9305-9310.
- 167. Crabtree TD, Jin L and Raymond DP, et al.: Preexposure of murine macrophages to CpG oligonucleotide results in a biphasic tumor necrosis factor alpha response to subsequent lipopolysaccharide challenge. *Infect Immun.* 69:2001; 2123–2129.
- 168. Sweet MJ, Campbell CC and Sester DP, et al.: Colony-stimulating factor-1 suppresses responses to CpG DNA and expression of toll-like receptor 9 but enhances responses to lipopolysaccharide in murine macrophages. *J Immunol*. 168:2002; 392–399.
- 169. Krieg AM: An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. J Lab Clin Med. 128:1996; 128–133.
- 170. Krieg AM: Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol. 4:1996; 73–76.
- 171. Liang H, Nishioka Y and Reich CF, et al.: Activation of human B cells by phosphorothioate oligodeoxynucleotides. *J Clin Invest*. 98:1996; 1119–1129.
- 172. Krieg AM: Now I know my CpGs. Trends Microbiol. 9:2001; 249-252.
- 173. Krug A, Rothenfusser S and Hornung V, et al.: Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. *Eur J Immunol*. 31:2001; 2154–2163.
- 174. Ballas ZK, Rasmussen WL and Krieg AM: Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. *J Immunol*. 157:1996; 1840–1845
- 175. Verthelyi D, Ishii K and Gursel M, et al.: Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. *J Immunol*. 166:2001; 2372–2377.

- Marshall JD, Fearon K and Abbate C, et al.: Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. *J Leukoc Biol.* 73:2003; 781–792.
- 177. Vollmer J, Weeratna R and Payette P, et al.: Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. *Eur J Immunol*. 34:2004; 251–262.
- 178. Carpentier A, Laigle-Donadey F and Zohar S, et al.: Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. *Neuro-oncology*. 8:2006; 60–66.
- Cooper CL, Davis HL and Angel JB, et al.: CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. Aids. 19:2005; 1473–1479.
- 180. Broide DH: DNA vaccines: an evolving approach to the treatment of allergic disorders. *Allergy Asthma Proc.* 26:2005; 195–198.
- 181. Friedberg JW, Kim H and McCauley M, et al.: Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-alpha/beta-inducible gene expression, without significant toxicity. Blood. 105:2005; 489–495.
- 182. Pichyangkul S, Yongvanitchit K and Kum-arb U, et al.: Whole blood cultures to assess the immunostimulatory activities of CpG oligodeoxynucleotides. *J Immunol Methods*. 247:2001; 83–94.
- 183. Adderson EE: Antibody repertoires in infants and adults: effects of T-independent and T-dependent immunizations. *Springer Semin Immunopathol.* 23:2001; 387–403.
- 184. Chu RS, McCool T and Greenspan NS, et al.: CpG oligodeoxynucleotides act as adjuvants for pneumococcal polysaccharide-protein conjugate vaccines and enhance antipolysaccharide immunoglobulin G2a (IgG2a) and IgG3 antibodies. *Infect Immun*. 68:2000; 1450–1456.
- 185. Bernard GR, Vincent JL and Laterre PF, et al.: Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 344:2001; 699–709.
- 186. Das UN: Current advances in sepsis and septic shock with particular emphasis on the role of insulin. *Med Sci Monit*. 9:2003; RA181–RA192.
- 187. Freeman BD, Zehnbauer BA and Buchman TG: A meta-analysis of controlled trials of anticoagulant therapies in patients with sepsis. *Shock*. 20:2003; 5–9.
- 188. Vincent JL, Abraham E and Annane D, et al.: Reducing mortality in sepsis: new directions. *Crit Care*. 6(Suppl 3):2002; S1–S18.
- 189. Gengenbacher D, Salm H, Vogt A and Schneider H: Detection of cell surface determinants for anti-Leu M3 (CD14), MY9 (CD33) and MY4 (CD14) and phagocytic function of cord blood monocytes in the course of gestational age. *Bone Marrow Transplant*. 22(Suppl 1):1998; S48–S51.
- 190. Blahnik MJ, Ramanathan R, Riley CR and Minoo P: Lipopolysaccharide-induced tumor necrosis factor-alpha and IL-10 production by lung macrophages from preterm and term neonates. *Pediatr Res.* 50:2001; 726–731.
- 191. Schibler KR, Trautman MS and Liechty KW, et al.: Diminished transcription of interleukin-8 by monocytes from preterm neonates. *J Leukoc Biol.* 53:1993; 399–403.
- 192. Dembinski J, Behrendt D and Martini R, et al.: Modulation of pro- and anti-inflammatory cytokine production in very preterm infants. *Cytokine*. 21:2003; 200–206.
- 193. Dembinski J, Behrendt D, Reinsberg J, Bartmann P: Endotoxin-stimulated production of IL-6 and IL-8 is increased in short-term cultures of whole blood from healthy term neonates. Cytokine. 18:2002; 116–119.
- Dembinski J, Martini R, Behrendt D and Bartmann P: Modification of cord blood IL-6 production with IgM enriched human immunoglobulin in term and preterm infants. Cytokine. 26:2004; 25–29.