Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Monte Carlo Methods in Bayesian Computation, Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-25
Ориентировочная дата поставки: начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название:  Monte Carlo Methods in Bayesian Computation
Перевод названия: Чен Минг-Уй: Методы Монте-Карло в байесовских расчетах
ISBN: 9780387989358
Издательство: Springer
Классификация:
ISBN-10: 0387989358
Обложка/Формат: Hardback
Страницы: 386
Вес: 0.72 кг.
Дата издания: 2001
Серия: Springer Series in Statistics
Язык: English
Издание: 1st ed. 2000. corr.
Иллюстрации: 1, black & white illustrations
Размер: 24.23 x 16.31 x 2.46
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.
Дополнительное описание: Илюстрации: 20
Круг читателей: Researchers,graduate students
Язык: eng
Издание: 1st ed. 2000. Corr. 2nd p
Оглавление: Introduction * Markov Chain Monte Carlo Sampling * Basic Monte Carlo Methods for Estimating Posterior Quantities * Estimating Marginal Posterior Densities * Estimating Ratios of Normalizing Constants * Monte Carlo Methods for Constrained Parameter Problems * Computing Bayesian Credible and HPD Intervals * Bayesian Approaches for Comparing Non-Nested Models * Bayesian Variable Section * Other Topics




Monte Carlo Methods in Financial Engineering

Автор: Glasserman
Название: Monte Carlo Methods in Financial Engineering
ISBN: 0387004513 ISBN-13(EAN): 9780387004518
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not."

Statistical DNA Forensics - Theory, Methods and Computation

Автор: Fung
Название: Statistical DNA Forensics - Theory, Methods and Computation
ISBN: 0470066369 ISBN-13(EAN): 9780470066362
Издательство: Wiley
Рейтинг:
Цена: 14723.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Statistical methodology plays a key role in ensuring that DNA evidence is collected, interpreted, analyzed, and presented correctly. With the recent advances in computer technology, this methodology is more complex than ever before. There are a growing number of books in the area but none are devoted to the computational analysis of evidence.

Fast Sequential Monte Carlo Methods for Counting and Optimiz

Автор: Rubinstein Reuven Y
Название: Fast Sequential Monte Carlo Methods for Counting and Optimiz
ISBN: 1118612264 ISBN-13(EAN): 9781118612262
Издательство: Wiley
Рейтинг:
Цена: 16307.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the first comprehensive account of fast sequential Monte Carlo (SMC) methods for counting and optimization at an exceptionally accessible level. Written by authorities in the field, it places great emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration.

A First Course in Bayesian Statistical Methods

Автор: Peter D. Hoff
Название: A First Course in Bayesian Statistical Methods
ISBN: 0387922997 ISBN-13(EAN): 9780387922997
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A self-contained introduction to probability, exchangeability and Bayes` rule provides a theoretical understanding of the applied material. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Bayesian Methods for Nonlinear Classification and Regression

Автор: David G. T. Denison
Название: Bayesian Methods for Nonlinear Classification and Regression
ISBN: 0471490369 ISBN-13(EAN): 9780471490364
Издательство: Wiley
Рейтинг:
Цена: 20584.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Regression analysis models the relationship between a set of responses and another variable: for example, to estimate the true position of a line through a number of observed points. Unfortunately, data rarely conforms to simple curves and straight lines - parametric models - and this text examines more complex - or nonparametric - models.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия