Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Bayesian Nonparametrics, Ghosh J.K., Ramamoorthi R.V.



Варианты приобретения
Цена: 23058р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2 июн 2025
Ориентировочная дата поставки: Июль
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ghosh J.K., Ramamoorthi R.V.
Название:  Bayesian Nonparametrics
Перевод названия: Дж. К. Грош, Р. В. Рамамурти: Байесовские непараметрические расчеты
ISBN: 9780387955377
Издательство: Springer
Классификация:
ISBN-10: 0387955372
Обложка/Формат: Hardback
Страницы: 324
Вес: 1.39 кг.
Дата издания: 28.04.2003
Серия: Springer Series in Statistics
Язык: English
Иллюстрации: 4 black & white illustrations, 4 black & white lin
Размер: 24.33 x 15.60 x 2.06
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Bayesian nonparametrics has grown tremendously in the last three decades, especially in the last few years. This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. While the book is of special interest to Bayesians, it will also appeal to statisticians in general because Bayesian nonparametrics offers a whole continuous spectrum of robust alternatives to purely parametric and purely nonparametric methods of classical statistics. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian nonparametrics. Though the emphasis of the book is on nonparametrics, there is a substantial chapter onJayanta Ghosh has been Director and Jawaharlal Nehru Professor at the Indian Statistical Institute and President of the International Statistical Institute. He is currently professor of statistics at Purdue University. He has been editor of Sankhya and served on the editorial boards of several journals including the Annals of Statistics. Apart from Bayesian analysis, his interests include asymptotics, stochastic modeling, high dimensional model selection, reliability and survival analysis and bioinformatics.R.V. Ramamoorthi is professor at the Department of Statistics and Probability at Michigan State University. He has published papers in the areas of sufficiency invariance, comparison of experiments, nonparametric survival analysis and Bayesian analysis. In addition to Bayesian nonparametrics, he is currently interested in Bayesian networks and graphical models. He is on the editorial board of Sankhya.
Дополнительное описание: Формат: 235x155
Илюстрации: 4
Круг читателей: Graduate students, researchers
Ключевые слова:
Язык: eng




Nonparametric Methods in Change Point Problems

Автор: Brodsky, E., Darkhovsky, B.S.
Название: Nonparametric Methods in Change Point Problems
ISBN: 0792321227 ISBN-13(EAN): 9780792321224
Издательство: Springer
Рейтинг:
Цена: 13275 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume deals with non-parametric methods of change point (disorder) detection in random processes and fields. A systematic account is given of up-to-date developments in this rapidly evolving branch of statistics.

Fundamentals of Nonparametric Bayesian Inference

Автор: Ghosal, Subhashis.
Название: Fundamentals of Nonparametric Bayesian Inference
ISBN: 0521878268 ISBN-13(EAN): 9780521878265
Издательство: Cambridge Academ
Рейтинг:
Цена: 12989 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.

Bayesian Nonparametric Data Analysis

Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T.
Название: Bayesian Nonparametric Data Analysis
ISBN: 3319189670 ISBN-13(EAN): 9783319189673
Издательство: Springer
Рейтинг:
Цена: 11878 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

Practical Nonparametric Statistics

Автор: Conover, W.J.
Название: Practical Nonparametric Statistics
ISBN: 0471160687 ISBN-13(EAN): 9780471160687
Издательство: Wiley
Рейтинг:
Цена: 36741 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This highly-regarded text serves as a quick reference book which offers clear, concise instructions on how and when to use the most popular nonparametric procedures.

Nonlinear Time Series / Nonparametric and Parametric Methods

Автор: Fan Jianqing, Yao Qiwei
Название: Nonlinear Time Series / Nonparametric and Parametric Methods
ISBN: 0387261427 ISBN-13(EAN): 9780387261423
Издательство: Springer
Рейтинг:
Цена: 15372 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the contemporary statistical methods and theory of nonlinear time series analysis. The principal focus is on nonparametric and semiparametric techniques developed in the last decade. It covers the techniques for modelling in state-space, in frequency-domain as well as in time-domain. To reflect the integration of parametric and nonparametric methods in analyzing time series data, the book also presents an up-to-date exposure of some parametric nonlinear models, including ARCH/GARCH models and threshold models. A compact view on linear ARMA models is also provided. Data arising in real applications are used throughout to show how nonparametric approaches may help to reveal local structure in high-dimensional data. Important technical tools are also introduced. The book will be useful for graduate students, application-oriented time series analysts, and new and experienced researchers. It will have the value both within the statistical community and across a broad spectrum of other fields such as econometrics, empirical finance, population biology and ecology. The prerequisites are basic courses in probability and statistics. Jianqing Fan, coauthor of the highly regarded book Local Polynomial Modeling, is Professor of Statistics at the University of North Carolina at Chapel Hill and the Chinese University of Hong Kong. His published work on nonparametric modeling, nonlinear time series, financial econometrics, analysis of longitudinal data, model selection, wavelets and other aspects of methodological and theoretical statistics has been recognized with the Presidents' Award from the Committee of Presidents of Statistical Societies, the Hettleman Prize for Artistic and Scholarly Achievement from the University of North Carolina, and by his election as a fellow of the American Statistical Association and the Institute of Mathematical Statistics. Qiwei Yao is Professor of Statistics at the London School of Economics and Political Science. He is an elected member of the International Statistical Institute, and has served on the editorial boards for the Journal of the Royal Statistical Society (Series B) and the Australian and New Zealand Journal of Statistics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия