Контакты/Адрес/Проезд   Доставка и Оплата
История
  +7(495) 980-12-10
  10:00-18:00 пн-сб
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Специальные предложения | Бестселлеры
 
Информация
Online Каталоги
Каталог учебной литературы
по английскому языку >>>

Каталог учебной литературы
по английскому языку >>>


Strength or Accuracy: Credit Assignment in Learning Classifier Systems, Kovacs Tim


Варианты приобретения
Цена: 15427р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 119 шт.  Склад Америка: 136 шт.  
При оформлении заказа до: 10 янв 2020
Ориентировочная дата поставки: середина Марта

Добавить в корзину
в Мои желания
Автор: Kovacs Tim
Название:  Strength or Accuracy: Credit Assignment in Learning Classifier Systems
Издательство: Springer
Классификация:
Алгоритмы и процедуры
Применение эвм
Искусственный интеллект

ISBN: 1852337702
ISBN-13(EAN): 9781852337704
ISBN: 1-85233-770-2
ISBN-13(EAN): 978-1-85233-770-4
Обложка/Формат: Hardback
Страницы: 307
Вес: 0.636 кг.
Дата издания: 2004
Серия: Distinguished Dissertations
Иллюстрации: Biography
Размер: 234 x 156 x 19
Читательская аудитория: Postgraduate, research & scholarly
Подзаголовок: Credit assignment in learning classifier systems
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: A detailed examination of learning classifier systems (LCS), a form of machine learning system, which incorporates both Evolutionary Algorithms and Reinforcement Learning Algorithms.
Дополнительное описание: Формат: 235x155
Илюстрации: 60
Круг читателей: Researchers, final year undergraduates
Ключевые слова: Learning classifier systems
Genetic Algorithms
Credit Assignment
Machine Learning/Artificial Intelligence
Язык: eng





Multiple Classifier Systems / 5th International Workshop, MCS 2004, Cagliari, Italy, June 9-11, 2004, Proceedings

Автор: Roli Fabio, Kittler Josef, Windeatt Terry
Название: Multiple Classifier Systems / 5th International Workshop, MCS 2004, Cagliari, Italy, June 9-11, 2004, Proceedings
ISBN: 3540221441 ISBN-13(EAN): 9783540221449
Издательство: Springer
Рейтинг:
Цена: 7012 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 5th International Workshop on Multiple Classifier Systems, MCS 2004, held in Cagliari, Italy in June 2004.The 35 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 50 submissions. The papers are organized in topical sections on bagging and boosting, combination methods, design methods, performance analysis, and applications.

Multiple Classifier Systems / 4th International Workshop, MCS 2003, Guilford, UK, June 11-13, 2003, Proceedings

Автор: Windeatt Terry, Roli Fabio
Название: Multiple Classifier Systems / 4th International Workshop, MCS 2003, Guilford, UK, June 11-13, 2003, Proceedings
ISBN: 3540403698 ISBN-13(EAN): 9783540403692
Издательство: Springer
Рейтинг:
Цена: 8134 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book constitutes the refereed proceedings of the 4th International Workshop on Multiple Classifier Systems, MCS 2003, held in Guildford, UK in June 2003.

The 40 revised full papers presented with one invited paper were carefully reviewed and selected for presentation. The papers are organized in topical sections on boosting, combination rules, multi-class methods, fusion schemes and architectures, neural network ensembles, ensemble strategies, and applications

Accuracy Improvements in Linguistic Fuzzy Modeling

Автор: Casillas J., CordГіn O., Herrera F., Magdalena L.
Название: Accuracy Improvements in Linguistic Fuzzy Modeling
ISBN: 3540029338 ISBN-13(EAN): 9783540029335
Издательство: Springer
Рейтинг:
Цена: 17764 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Fuzzy modeling usually comes with two contradictory requirements: interpretability, which is the capability to express the real system behavior in a comprehensible way, and accuracy, which is the capability to faithfully represent the real system. In this framework, one of the most important areas is linguistic fuzzy modeling, where the legibility of the obtained model is the main objective. This task is usually developed by means of linguistic (Mamdani) fuzzy rule-based systems. An active research area is oriented towards the use of new techniques and structures to extend the classical, rigid linguistic fuzzy modeling with the main aim of increasing its precision degree. Traditionally, this accuracy improvement has been carried out without considering the corresponding interpretability loss. Currently, new trends have been proposed trying to preserve the linguistic fuzzy model description power during the optimization process. Written by leading experts in the field, this volume collects some representative researcher that pursue this approach.

Foundations of Learning Classifier Systems

Автор: Bull Larry, Kovacs Tim
Название: Foundations of Learning Classifier Systems
ISBN: 3540250735 ISBN-13(EAN): 9783540250739
Издательство: Springer
Рейтинг:
Цена: 20477 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Section 1 – Rule Discovery. Population Dynamics of Genetic Algorithms. Approximating Value Functions in Classifier Systems. Two Simple Learning Classifier Systems. Computational Complexity of the XCS Classifier System. An Analysis of Continuous-Valued Representations for Learning Classifier Systems.- Section 2 – Credit Assignment. Reinforcement Learning: a Brief Overview. A Mathematical Framework for Studying Learning Classifier Systems. Rule Fitness and Pathology in Learning Classifier Systems. Learning Classifier Systems: A Reinforcement Learning Perspective. Learning Classifier Systems with Convergence and Generalization.- Section 3 – Problem Characterization. On the Classification of Maze Problems. What Makes a Problem Hard?

Learning Classifier Systems

Автор: Tim Kovacs; Xavier Llor?; Keiki Takadama; Pier Luc
Название: Learning Classifier Systems
ISBN: 3540712305 ISBN-13(EAN): 9783540712305
Издательство: Springer
Рейтинг:
Цена: 7012 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed joint post-proceedings of 3 consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL, USA in July 2003, in Seattle, WA, USA in June 2004, and in Washington, DC, USA in June 2005 - all hosted by the Genetic and Evolutionary Computation Conference, GECCO.

Learning Classifier Systems in Data Mining

Автор: Bull
Название: Learning Classifier Systems in Data Mining
ISBN: 3540789782 ISBN-13(EAN): 9783540789789
Издательство: Springer
Рейтинг:
Цена: 15728 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Describes the main forms of Learning Classifier System. This book describes research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles and knowledge discovery.

Anticipatory Learning Classifier Systems

Автор: Butz Martin V.
Название: Anticipatory Learning Classifier Systems
ISBN: 0792376307 ISBN-13(EAN): 9780792376309
Издательство: Springer
Рейтинг:
Цена: 14020 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Anticipatory Learning Classifier Systems describes the state of the art of anticipatory learning classifier systems-adaptive rule learning systems that autonomously build anticipatory environmental models. An anticipatory model specifies all possible action-effects in an environment with respect to given situations. It can be used to simulate anticipatory adaptive behavior. Anticipatory Learning Classifier Systems highlights how anticipations influence cognitive systems and illustrates the use of anticipations for (1) faster reactivity, (2) adaptive behavior beyond reinforcement learning, (3) attentional mechanisms, (4) simulation of other agents and (5) the implementation of a motivational module. The book focuses on a particular evolutionary model learning mechanism, a combination of a directed specializing mechanism and a genetic generalizing mechanism. Experiments show that anticipatory adaptive behavior can be simulated by exploiting the evolving anticipatory model for even faster model learning, planning applications, and adaptive behavior beyond reinforcement learning.

Applications of Learning Classifier Systems

Автор: Bull Larry
Название: Applications of Learning Classifier Systems
ISBN: 3540211098 ISBN-13(EAN): 9783540211099
Издательство: Springer
Рейтинг:
Цена: 15894 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This carefully edited book brings together a fascinating selection of applications of Learning Classifier Systems (LCS). The book demonstrates the utility of this machine learning technique in recent real-world applications in such domains as data mining, modelling and optimization, and control. It shows how the LCS technique combines and exploits many Soft Computing approaches into a single coherent framework to produce an improved performance over other approaches.

Multiple Classifier Systems / Third International Workshop, MCS 2002, Cagliari, Italy, June 24-26, 2002. Proceedings

Автор: Roli Fabio, Kittler Josef
Название: Multiple Classifier Systems / Third International Workshop, MCS 2002, Cagliari, Italy, June 24-26, 2002. Proceedings
ISBN: 3540438181 ISBN-13(EAN): 9783540438182
Издательство: Springer
Рейтинг:
Цена: 6544 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the Third International Workshop on Multiple Classifier Systems, MCS 2002, held in Cagliari, Italy, in June 2002.The 29 revised full papers presented together with three invited papers were carefully reviewed and selected for inclusion in the volume. The papers are organized in topical sections on bagging and boosting, ensemble learning and neural networks, design methodologies, combination strategies, analysis and performance evaluation, and applications.

Multiple Classifier Systems

Автор: Neamat El Gayar; Josef Kittler; Fabio Roli
Название: Multiple Classifier Systems
ISBN: 3642121268 ISBN-13(EAN): 9783642121265
Издательство: Springer
Рейтинг:
Цена: 7012 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the proceedings of the 9th International Workshop on Multiple Classifier Systems, MCS 2010, held in Cairo, Egypt, in April 2010. This book includes contributions that are organized into sessions dealing with classifier combination and classifier selection, diversity, bagging and boosting, and combination of multiple kernels.

Design and Analysis of Learning Classifier Systems

Автор: Drugowitsch
Название: Design and Analysis of Learning Classifier Systems
ISBN: 354079865X ISBN-13(EAN): 9783540798651
Издательство: Springer
Рейтинг:
Цена: 14024 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents an introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. This book shows how generic machine learning methods can be applied to design LCS algorithms from the first principles of their underlying probabilistic model.

Multiple Classifier Systems / 7th International Workshop, MCS 2007, Prague, Czech Republic, May 23-25, 2007, Proceedings

Автор: Haindl Michal, Kittler Josef, Roli Fabio
Название: Multiple Classifier Systems / 7th International Workshop, MCS 2007, Prague, Czech Republic, May 23-25, 2007, Proceedings
ISBN: 3540724818 ISBN-13(EAN): 9783540724810
Издательство: Springer
Рейтинг:
Цена: 9349 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 7th International Workshop on Multiple Classifier Systems, MCS 2007, held in Prague, Czech Republic in May 2007.The 49 revised full papers presented together with 2 invited papers were carefully reviewed and selected from more than 80 initial submissions. The papers are organized in topical sections on kernel-based fusion, applications, boosting, cluster and graph ensembles, feature subspace ensembles, multiple classifier system theory, intramodal and multimodal fusion of biometric experts, majority voting, and ensemble learning.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте  Мобильная версия