Описание: This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.
Автор: Khinchin, A. Ya. Название: Mathematical Foundations of Information Theory ISBN: 0486604349 ISBN-13(EAN): 9780486604343 Издательство: Dover Рейтинг: Цена: 1359.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The first comprehensive introduction to information theory, this book places the work begun by Shannon and continued by McMillan, Feinstein, and Khinchin on a rigorous mathematical basis. For the first time, mathematicians, statisticians, physicists, cyberneticists, and communications engineers are offered a lucid, comprehensive introduction to this rapidly growing field. In his first paper, Dr. Khinchin develops the concept of entropy in probability theory as a measure of uncertainty of a finite "scheme," and discusses a simple application to coding theory. The second paper investigates the restrictions previously placed on the study of sources, channels, and codes and attempts "to give a complete, detailed proof of both ... Shannon theorems, assuming any ergodic source and any stationary channel with a finite memory." Partial Contents: I. The Entropy Concept in Probability Theory -- Entropy of Finite Schemes. The Uniqueness Theorem. Entropy of Markov chains. Application to Coding Theory. II. On the Fundamental Theorems of Information Theory -- Two generalizations of Shannon's inequality. Three inequalities of Feinstein. Concept of a source. Stationarity. Entropy. Ergodic sources. The E property. The martingale concept. Noise. Anticipation and memory. Connection of the channel to the source. Feinstein's Fundamental Lemma. Coding. The first Shannon theorem. The second Shannon theorem.
In the nineteenth century, French mathematician Evariste Galois developed the Galois theory of groups-one of the most penetrating concepts in modem mathematics. The elements of the theory are clearly presented in this second, revised edition of a volume of lectures delivered by noted mathematician Emil Artin. The book has been edited by Dr. Arthur N. Milgram, who has also supplemented the work with a Section on Applications. The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more. Dr. Milgram's section on applications discusses solvable groups, permutation groups, solution of equations by radicals, and other concepts.
Автор: Smullyan, Raymond Название: A Beginner`s Guide to Mathematical Logic ISBN: 0486492370 ISBN-13(EAN): 9780486492377 Издательство: Dover Рейтинг: Цена: 3096.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by a creative master of mathematical logic, this introductory text combines stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic. Author Raymond Smullyan offers clear, incremental presentations of difficult logic concepts. He highlights each subject with inventive explanations and unique problems. Smullyan's accessible narrative provides memorable examples of concepts related to proofs, propositional logic and first-order logic, incompleteness theorems, and incompleteness proofs. Additional topics include undecidability, combinatoric logic, and recursion theory. Suitable for undergraduate and graduate courses, this book will also amuse and enlighten mathematically minded readers. 2014 edition.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru