Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-20 сб-вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Cертификаты | Хиты | |
 

A Distribution-Free Theory of Nonparametric Regression, Gy?rfi



Варианты приобретения
Цена: 18809р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 217 шт.  Склад Америка: 117 шт.  
При оформлении заказа до: 13 авг 2021
Ориентировочная дата поставки: середина сентября

Добавить в корзину
в Мои желания

Автор: Gy?rfi
Название:  A Distribution-Free Theory of Nonparametric Regression
Издательство: Springer
Классификация:
ISBN: 0387954414
ISBN-13(EAN): 9780387954417
Обложка/Формат: Hardback
Страницы: 663
Вес: 1.111 кг.
Дата издания: 04.09.2002
Серия: Statistical Theory and Methods / Springer Series in Statistics
Язык: English
Издание: 2002 ed.
Иллюстрации: Xvi, 650 p.
Размер: 22.96 x 17.37 x 3.51
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Presents an approach to nonparametric regression with random design. This monograph is intended for graduate students and researchers in statistics, mathematics, computer science, and engineering.



Nonparametric Methods in Change Point Problems

Автор: Brodsky, E., Darkhovsky, B.S.
Название: Nonparametric Methods in Change Point Problems
ISBN: 0792321227 ISBN-13(EAN): 9780792321224
Издательство: Springer
Рейтинг:
Цена: 9926 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume deals with non-parametric methods of change point (disorder) detection in random processes and fields. A systematic account is given of up-to-date developments in this rapidly evolving branch of statistics.

Practical Nonparametric and Semiparametric Bayesian Statistics

Автор: Dey
Название: Practical Nonparametric and Semiparametric Bayesian Statistics
ISBN: 0387985174 ISBN-13(EAN): 9780387985176
Издательство: Springer
Рейтинг:
Цена: 17241 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Nonparametric and semiparametric statistical methods are attractive to researchers in a large number of fields, including pharmaceuticals, medical and public health centers, financial institutions, and environmental monitoring centers. This volume presents both the theoretical and applied aspects of these methods.

Practical Nonparametric Statistics

Автор: Conover, W.J.
Название: Practical Nonparametric Statistics
ISBN: 0471160687 ISBN-13(EAN): 9780471160687
Издательство: Wiley
Рейтинг:
Цена: 22248 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text aims to serve as a quick reference book offering instructions on how and when to use the most popular nonparametric procedures. It features procedures such as the Fisher Exact Test for two-by-two contingency tables, and the Mantel-Haenszel Test for combining several contingency tables.

Nonparametric Monte Carlo Tests and Their Applications

Автор: Zhu Lixing
Название: Nonparametric Monte Carlo Tests and Their Applications
ISBN: 0387250387 ISBN-13(EAN): 9780387250380
Издательство: Springer
Рейтинг:
Цена: 8359 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A fundamental issue in statistical analysis is testing the fit of a particular probability model to a set of observed data. Monte Carlo approximation to the null distribution of the test provides a convenient and powerful means of testing model fit. Nonparametric Monte Carlo Tests and Their Applications proposes a new Monte Carlo-based methodology to construct this type of approximation when the model is semistructured. When there are no nuisance parameters to be estimated, the nonparametric Monte Carlo test can exactly maintain the significance level, and when nuisance parameters exist, this method can allow the test to asymptotically maintain the level. The author addresses both applied and theoretical aspects of nonparametric Monte Carlo tests. The new methodology has been used for model checking in many fields of statistics, such as multivariate distribution theory, parametric and semiparametric regression models, multivariate regression models, varying-coefficient models with longitudinal data, heteroscedasticity, and homogeneity of covariance matrices. This book will be of interest to both practitioners and researchers investigating goodness-of-fit tests and resampling approximations.Every chapter of the book includes algorithms, simulations, and theoretical deductions. The prerequisites for a full appreciation of the book are a modest knowledge of mathematical statistics and limit theorems in probability/empirical process theory. The less mathematically sophisticated reader will find Chapters 1, 2 and 6 to be a comprehensible introduction on how and where the new method can apply and the rest of the book to be a valuable reference for Monte Carlo test approximation and goodness-of-fit tests.Lixing Zhu is Associate Professor of Statistics at the University of Hong Kong. He is a winner of the Humboldt Research Award at Alexander-von Humboldt Foundation of Germany and an elected Fellow of the Institute of Mathematical Statistics.From the reviews:"These lecture notes discuss several topics in goodness-of-fit testing, a classical area in statistical analysis. … The mathematical part contains detailed proofs of the theoretical results. Simulation studies illustrate the quality of the Monte Carlo approximation. … this book constitutes a recommendable contribution to an active area of current research." Winfried Stute for Mathematical Reviews, Issue 2006"...Overall, this is an interesting book, which gives a nice introduction to this new and specific field of resampling methods." Dongsheng Tu for Biometrics, September 2006

Nonparametric Goodness-of-Fit Testing Under Gaussian Models

Автор: Ingster Yuri, Suslina I.A.
Название: Nonparametric Goodness-of-Fit Testing Under Gaussian Models
ISBN: 0387955313 ISBN-13(EAN): 9780387955315
Издательство: Springer
Рейтинг:
Цена: 17241 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: There are two main problems in statistics, estimation theory and hypothesis testing. For the classical finite-parametric case, these problems were studied in parallel. On the other hand, many statistical problems are not parametric in the classical sense; the objects of estimation or testing arefunctions, images, and so on. These can be treated as unknown infinite-dimensional parameters that belongto specific functional sets. This approach to nonparametric estimation under asymptotically minimax setting was started in the 1960s-1970s and was developed very intensively for wide classes of functional sets and loss functions.Nonparametric estimation problems have generated a large literature. On the other hand, nonparametrichypotheses testing problems have not drawn comparable attention in the statistical literature. In this book, the authors develop a modern theory of nonparametric goodness-of-fit testing. The presentation is based on an asymptotic version of the minimax approach. The key element of the theory isthe method of constructing of asymptotically least favorable priors for a wide enough class of nonparametric hypothesis testing problems. These provide methods for the construction of asymptotically optimal, rate optimal, and optimal adaptive test procedures. The book is addressed to mathematical statisticians who are interesting in the theory of nonparametricstatistical inference. It will be of interest to specialists who are dealing with applied nonparametric statistical problems in signal detection and transmission, and technical and mother fields. The material is suitable for graduate courses on mathematical statistics. The book assumes familiarity with probability theory.

Principles of Nonparametric Learning

Автор: GyГ¶rfi Laszlo
Название: Principles of Nonparametric Learning
ISBN: 3211836888 ISBN-13(EAN): 9783211836880
Издательство: Springer
Рейтинг:
Цена: 14649 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming.The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions.

Introduction to Nonparametric Regression

Автор: K. Takezawa
Название: Introduction to Nonparametric Regression
ISBN: 0471745839 ISBN-13(EAN): 9780471745839
Издательство: Wiley
Рейтинг:
Цена: 17325 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: "Introduction to Nonparametric Regression" presents a complete but fundamental and readily accessible treatment of nonparametric regression, a subset of the larger area of nonparametric statistics. The explanations are presented in a user-friendly format and along with S-Plus and R subroutines in an effort to derive many of the real-world data and results. The overall theme of the book is to showcase the attractiveness and usefulness of nonparametric regression. In addition to discussing the usual kernel and spline methods, the book also briefly covers tree models.

Advanced Linear Modeling / Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization

Автор: Christensen Ronald
Название: Advanced Linear Modeling / Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization
ISBN: 0387952969 ISBN-13(EAN): 9780387952963
Издательство: Springer
Рейтинг:
Цена: 9404 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces several topics related to linear model theory: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. The second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subject and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure. He is the author of numerous technical articles and several books and he is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. Also Available: Christensen, Ronald. Plane Answers to Complex Questions: The Theory of Linear Models, Second Edition (1996). New York: Springer-Verlag New York, Inc. Christensen, Ronald. Log-Linear Models and Logistic Regression, Second Edition (1997). New York: Springer-Verlag New York, Inc.

Multivariate Nonparametric Regression and Visualization

Автор: Klemela Jussi
Название: Multivariate Nonparametric Regression and Visualization
ISBN: 0470384425 ISBN-13(EAN): 9780470384428
Издательство: Wiley
Рейтинг:
Цена: 10505 р.
Наличие на складе: Поставка под заказ.

Описание: Covering classification and regression, Statistical Learning is the first of its kind to use visualization techniques to identify, test, and analyze classifiers for their most accurate exploration of data.

Nonparametric Regression and Generalized Linear Models

Автор: Green
Название: Nonparametric Regression and Generalized Linear Models
ISBN: 0412300400 ISBN-13(EAN): 9780412300400
Издательство: Taylor&Francis
Рейтинг:
Цена: р.
Наличие на складе: Поставка под заказ.

Описание: Nonparametric Regression and Generalized Linear Models focuses on the roughness penalty method of nonparametric smoothing and shows how this technique provides a unifying approach to a wide range of smoothing problems. The emphasis is methodological rather than theoretical, and the authors concentrate on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students.

Robust Nonparametric Statistical Methods, Second Edition

Автор: Hettmansperger
Название: Robust Nonparametric Statistical Methods, Second Edition
ISBN: 1439809089 ISBN-13(EAN): 9781439809082
Издательство: Taylor&Francis
Рейтинг:
Цена: 16170 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presenting an extensive set of tools and methods for data analysis, this second edition includes more models and methods and significantly extends the possible analyses based on ranks. It contains a new section on rank procedures for nonlinear models, a new chapter on models with dependent error structure, and new material on the development of computationally efficient affine invariant/equivariant sign methods based on transform-retransform techniques in multivariate models. The authors illustrate the methods using many real-world examples and R. Information about the data sets and R packages can be found at www.crcpress.com

Nonparametric Curve Estimation

Автор: Efromovich
Название: Nonparametric Curve Estimation
ISBN: 0387987401 ISBN-13(EAN): 9780387987408
Издательство: Springer
Рейтинг:
Цена: 17241 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Gives an introduction to nonparametric curve estimation theory.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия