Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Cертификаты | Хиты | | |
 

Introduction to Nonparametric Estimation, Alexandre B. Tsybakov



Варианты приобретения
Цена: 12704р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 30 авг 2022
Ориентировочная дата поставки: конец Сентября- начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Alexandre B. Tsybakov
Название:  Introduction to Nonparametric Estimation
Перевод названия: Александр Цибаков: Введение в непараметрическую аппроксимацию
ISBN: 9780387790510
Издательство: Springer
Классификация:
ISBN-10: 0387790519
Обложка/Формат: Hardback
Страницы: 226
Вес: 0.498 кг.
Дата издания: 01.01.2009
Серия: Springer series in statistics
Язык: English
Издание: 1st edition. 2nd pri
Иллюстрации: Illustrations
Размер: 243 x 159 x 19
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии



Nonparametric Methods in Change Point Problems

Автор: Brodsky, E., Darkhovsky, B.S.
Название: Nonparametric Methods in Change Point Problems
ISBN: 0792321227 ISBN-13(EAN): 9780792321224
Издательство: Springer
Рейтинг:
Цена: 10971 р.
Наличие на складе: Поставка под заказ.

Описание: This volume deals with non-parametric methods of change point (disorder) detection in random processes and fields. A systematic account is given of up-to-date developments in this rapidly evolving branch of statistics.

Introduction to Nonparametric Statistics for the Biological Sciences Using R

Автор: MacFarland
Название: Introduction to Nonparametric Statistics for the Biological Sciences Using R
ISBN: 3319306332 ISBN-13(EAN): 9783319306339
Издательство: Springer
Рейтинг:
Цена: 7737 р.
Наличие на складе: Поставка под заказ.

Описание: This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers onhow R is used for nonparametric data analysis in the biological sciences:To introduce when nonparametricapproaches to data analysis are appropriateTo introduce the leadingnonparametric tests commonly used in biostatistics and how R is used togenerate appropriate statistics for each testTo introduce common figurestypically associated with nonparametric data analysis and how R is used togenerate appropriate figures in support of each data setThe book focuses on how R is used todistinguish between data that could be classified as nonparametric as opposedto data that could be classified as parametric, with both approaches to data classification covered extensively.Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach.This supplemental text is intended for:Upper-level undergraduate and graduate students majoring in the biological sciences, specifically those in agriculture, biology, and health science - both students in lecture-type courses and also those engaged in research projects, such as a master's thesis or a doctoral dissertationAnd biological researchers at the professional level without a nonparametric statistics background but who regularly work with data more suitable to a nonparametric approach to data analysis

All of Nonparametric Statistics

Автор: Wasserman
Название: All of Nonparametric Statistics
ISBN: 0387251456 ISBN-13(EAN): 9780387251455
Издательство: Springer
Рейтинг:
Цена: 15014 р.
Наличие на складе: Поставка под заказ.

Описание: The goal of this text is to provide the reader with a single book where they can find a brief account of many, modern topics in nonparametric inference. The book is aimed at Master's level or Ph.D. level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods.This text covers a wide range of topics including: the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book has a mixture of methods and theory.From the reviews:"...The book is excellent." (Short Book Reviews of the ISI, June 2006)"Now we have All of Nonparametric Statistics … . the writing is excellent and the author is to be congratulated on the clarity achieved. … the book is excellent." (N.R. Draper, Short Book Reviews, Vol. 26 (1), 2006)"Overall, I enjoyed reading this book very much. I like Wasserman's intuitive explanations and careful insights into why one path or approach is taken over another. Most of all, I am impressed with the wealth of information on the subject of asymptotic nonparametric inferences." (Stergios B. Fotopoulos for Technometrics, Vol. 49, No. 1., February 2007)

Applied Nonparametric Statistical Methods, Fourth Edition

Автор: Sprent
Название: Applied Nonparametric Statistical Methods, Fourth Edition
ISBN: 158488701X ISBN-13(EAN): 9781584887010
Издательство: Taylor&Francis
Рейтинг:
Цена: 12374 р.
Наличие на складе: Поставка под заказ.

Описание: While preserving the clear, accessible style of previous editions, this fourth edition reflects the latest developments in computer-intensive methods that deal with intractable analytical problems and unwieldy data sets. This edition summarizes relevant general statistical concepts and introduces basic ideas of nonparametric or distribution-free methods. Designed experiments, including those with factorial treatment structures, are now the focus of an entire chapter. The book also expands coverage on the analysis of survival data and the bootstrap method. The new final chapter focuses on important modern developments. With numerous exercises, the text offers the student edition of StatXact at a discounted price.

Principles of Nonparametric Learning

Автор: GyГ¶rfi Laszlo
Название: Principles of Nonparametric Learning
ISBN: 3211836888 ISBN-13(EAN): 9783211836880
Издательство: Springer
Рейтинг:
Цена: 16191 р.
Наличие на складе: Поставка под заказ.

Описание: The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming.The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions.

Introduction to Nonparametric Regression

Автор: K. Takezawa
Название: Introduction to Nonparametric Regression
ISBN: 0471745839 ISBN-13(EAN): 9780471745839
Издательство: Wiley
Рейтинг:
Цена: 20625 р.
Наличие на складе: Поставка под заказ.

Описание: "Introduction to Nonparametric Regression" presents a complete but fundamental and readily accessible treatment of nonparametric regression, a subset of the larger area of nonparametric statistics. The explanations are presented in a user-friendly format and along with S-Plus and R subroutines in an effort to derive many of the real-world data and results. The overall theme of the book is to showcase the attractiveness and usefulness of nonparametric regression. In addition to discussing the usual kernel and spline methods, the book also briefly covers tree models.

Nonparametric Curve Estimation

Автор: Efromovich
Название: Nonparametric Curve Estimation
ISBN: 0387987401 ISBN-13(EAN): 9780387987408
Издательство: Springer
Рейтинг:
Цена: 19056 р.
Наличие на складе: Поставка под заказ.

Описание: Gives an introduction to nonparametric curve estimation theory.

Nonlinear Time Series / Nonparametric and Parametric Methods

Автор: Fan Jianqing, Yao Qiwei
Название: Nonlinear Time Series / Nonparametric and Parametric Methods
ISBN: 0387261427 ISBN-13(EAN): 9780387261423
Издательство: Springer
Рейтинг:
Цена: 12704 р.
Наличие на складе: Поставка под заказ.

Описание: This book presents the contemporary statistical methods and theory of nonlinear time series analysis. The principal focus is on nonparametric and semiparametric techniques developed in the last decade. It covers the techniques for modelling in state-space, in frequency-domain as well as in time-domain. To reflect the integration of parametric and nonparametric methods in analyzing time series data, the book also presents an up-to-date exposure of some parametric nonlinear models, including ARCH/GARCH models and threshold models. A compact view on linear ARMA models is also provided. Data arising in real applications are used throughout to show how nonparametric approaches may help to reveal local structure in high-dimensional data. Important technical tools are also introduced. The book will be useful for graduate students, application-oriented time series analysts, and new and experienced researchers. It will have the value both within the statistical community and across a broad spectrum of other fields such as econometrics, empirical finance, population biology and ecology. The prerequisites are basic courses in probability and statistics. Jianqing Fan, coauthor of the highly regarded book Local Polynomial Modeling, is Professor of Statistics at the University of North Carolina at Chapel Hill and the Chinese University of Hong Kong. His published work on nonparametric modeling, nonlinear time series, financial econometrics, analysis of longitudinal data, model selection, wavelets and other aspects of methodological and theoretical statistics has been recognized with the Presidents' Award from the Committee of Presidents of Statistical Societies, the Hettleman Prize for Artistic and Scholarly Achievement from the University of North Carolina, and by his election as a fellow of the American Statistical Association and the Institute of Mathematical Statistics. Qiwei Yao is Professor of Statistics at the London School of Economics and Political Science. He is an elected member of the International Statistical Institute, and has served on the editorial boards for the Journal of the Royal Statistical Society (Series B) and the Australian and New Zealand Journal of Statistics.

Advanced Linear Modeling / Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization

Автор: Christensen Ronald
Название: Advanced Linear Modeling / Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization
ISBN: 0387952969 ISBN-13(EAN): 9780387952963
Издательство: Springer
Рейтинг:
Цена: 10394 р.
Наличие на складе: Поставка под заказ.

Описание: This book introduces several topics related to linear model theory: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. The second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subject and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure. He is the author of numerous technical articles and several books and he is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. Also Available: Christensen, Ronald. Plane Answers to Complex Questions: The Theory of Linear Models, Second Edition (1996). New York: Springer-Verlag New York, Inc. Christensen, Ronald. Log-Linear Models and Logistic Regression, Second Edition (1997). New York: Springer-Verlag New York, Inc.

Nonparametric Functional Data Analysis

Автор: Ferraty
Название: Nonparametric Functional Data Analysis
ISBN: 0387303693 ISBN-13(EAN): 9780387303697
Издательство: Springer
Рейтинг:
Цена: 15014 р.
Наличие на складе: Поставка под заказ.

Описание: Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas.

Nonparametric Smoothing and Lack-of-Fit Tests

Автор: Hart
Название: Nonparametric Smoothing and Lack-of-Fit Tests
ISBN: 0387949801 ISBN-13(EAN): 9780387949802
Издательство: Springer
Рейтинг:
Цена: 19056 р.
Наличие на складе: Поставка под заказ.

Описание: A fundamental problem in statistical analysis is checking how well a particular probability model fits a set of observed data. In many settings, nonparametric smoothing methods provide a convenient and powerful means of testing model fit. Nonparametric Smoothing and Lack-of-Fit Tests explores the use of smoothing methods in testing the fit of parametric regression models.

The book reviews many of the existing methods for testing lack-of-fit and also proposes a number of new methods. Both applied and theoretical aspects of the model checking problems are addressed. As such, the book should be of interest to practitioners of statistics and researchers investigating either lack-of-fit tests or nonparametric smoothing ideas.

The first four chapters of the book are an introduction to the problem of estimating regression functions by nonparametric smoothers, primarily those of kernel and Fourier series type. This part of the book could be used as the foundation for a graduate level course on nonparametric function estimation. The prerequisites for a full appreciation of the book are a modest knowledge of calculus and some familiarity with the basics of mathematical statistics.

The less mathematically sophisticated reader will find Chapter 2 to be a comprehensible introduction to smoothing ideas and the rest of the book to be a valuable reference for both nonparametric function estimation and lack-of-fit tests. Jeffrey D. Hart is Pr fessor of Statistics at Texas A&M University.

He is an associate editor of the Journal of the American Statistical Association, an elected Fellow of the Institute of Mathematical Statistics, and winner of a distinguished teaching award at Texas A&M University.

Nonparametric inference

Название: Nonparametric inference
ISBN: 981270034X ISBN-13(EAN): 9789812700346
Издательство: World Scientific Publishing
Рейтинг:
Цена: 20543 р.
Наличие на складе: Поставка под заказ.

Описание: This book provides a solid foundation on nonparametric inference for students taking a graduate course in nonparametric statistics and serves as an easily accessible source for researchers in the area. With the exception of some sections requiring familiarity with measure theory, readers with an advanced calculus background will be comfortable with the material.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия