Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Cертификаты | Хиты | | |
 

Apartments HB, Gomez, Mariette Himes



Варианты приобретения
Цена: 3871р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Заказ пока невозможен
в Мои желания

Автор: Gomez, Mariette Himes
Название:  Apartments HB
Перевод названия: Квартиры
ISBN: 9780061672361
Издательство: HarperCollins USA
Классификация:
ISBN-10: 006167236X
Обложка/Формат: Hardback
Страницы: 240
Вес: 1.061 кг.
Дата издания: 25.02.2010
Серия: Design
Язык: English
Иллюстрации: 250 colour
Размер: 259.10 x 213.40 x 25.10
Читательская аудитория: General (us: trade)
Рейтинг:
Поставляется из: США



Mariette in Ecstasy

Автор: Hansenn R
Название: Mariette in Ecstasy
ISBN: 0060981180 ISBN-13(EAN): 9780060981181
Издательство: HarperCollins USA
Цена: 1258 р.
Наличие на складе: Нет в наличии.

Описание: When miraculous wounds appear on a seventeen-year-old postulant in an upstate New York convent who claims to have been seduced by God, a religious controversy ensues.

Rooms

Автор: Gomez, Mariette Himes
Название: Rooms
ISBN: 0060083700 ISBN-13(EAN): 9780060083700
Издательство: HarperCollins USA
Рейтинг:
Цена: 3867 р.
Наличие на складе: Нет в наличии.

Описание: In this lavishly photographed full-color book, award-winning designer Mariette Himes Gomez uses her own home renovation to show us the decorating process and inspire us to create beautiful rooms of our own.

Efficient Learning Machines

Автор: Awad Mariette
Название: Efficient Learning Machines
ISBN: 1430259892 ISBN-13(EAN): 9781430259893
Издательство: Springer
Рейтинг:
Цена: 3459 р.
Наличие на складе: Поставка под заказ.

Описание:

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques.

Mariette Awad and Rahul Khanna's synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions.

Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms.

Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия