Автор: Strang Название: Differential Equations and Linear Algebra ISBN: 0980232791 ISBN-13(EAN): 9780980232790 Издательство: Cambridge Academ Рейтинг: Цена: 5751 р. Наличие на складе: Ожидается поступление.

Описание: Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.

Описание: Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The exposition maintains a balance between theoretical, algorithmic and applied aspects. This new edition has been extensively updated, and includes new chapters on emerging subject areas: geometric numerical integration, spectral methods and conjugate gradients. Other topics covered include multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; and a variety of algorithms to solve large, sparse algebraic systems.

Автор: Logan Название: A First Course in Differential Equations ISBN: 1441975918 ISBN-13(EAN): 9781441975911 Издательство: Springer Рейтинг: Цена: 6265 р. Наличие на складе: Поставка под заказ.

Описание: This concise and up-to-date textbook is designed for the standard sophomore course in differential equations. It treats the basic ideas, models, and solution methods in a user friendly format that is accessible to engineers, scientists, economists, and mathematics majors. It emphasizes analytical, graphical, and numerical techniques, and it provides the tools needed by students to continue to the next level in applying the methods to more advanced problems. There is a strong connection to applications with motivations in mechanics and heat transfer, circuits, biology, economics, chemical reactors, and other areas. Exceeding the first edition by over one hundred pages, this new edition has a large increase in the number of worked examples and practice exercises, and it continues to provide templates for MATLAB and Maple commands and codes that are useful in differential equations. Sample examination questions are included for students and instructors. Solutions of many of the exercises are contained in an appendix. Moreover, the text contains a new, elementary chapter on systems of differential equations, both linear and nonlinear, that introduces key ideas without matrix analysis. Two subsequent chapters treat systems in a more formal way. Briefly, the topics include: * First-order equations: separable, linear, autonomous, and bifurcation phenomena; * Second-order linear homogeneous and non-homogeneous equations; * Laplace transforms; and * Linear and nonlinear systems, and phase plane properties.

Описание: A First Course in Differential Equations, Modeling, and Simulation shows how differential equations arise from applying basic physical principles and experimental observations to engineering systems. Avoiding overly theoretical explanations, the textbook also discusses classical and Laplace transform methods for obtaining the analytical solution of differential equations. In addition, the authors explain how to solve sets of differential equations where analytical solutions cannot easily be obtained. Incorporating valuable suggestions from mathematicians and mathematics professors, the Second Edition: Expands the chapter on classical solutions of ordinary linear differential equations to include additional methods Increases coverage of response of first- and second-order systems to a full, stand-alone chapter to emphasize its importance Includes new examples of applications related to chemical reactions, environmental engineering, biomedical engineering, and biotechnology Contains new exercises that can be used as projects and answers to many of the end-of-chapter problems Features new end-of-chapter problems and updates throughout Thus, A First Course in Differential Equations, Modeling, and Simulation, Second Edition provides students with a practical understanding of how to apply differential equations in modern engineering and science.

Описание: This book concerns the practical solution of Partial Differential Equations (PDEs). It reflects an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It assumes the reader has gained some intuitive knowledge of PDE solution properties and now wants to solve some for real, in the context of practical problems arising in real situations. The practical aspect of this book is the infused focus on computation. It presents two major discretization methods вЂ“ Finite Difference and Finite Element. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems. It is divided into three parts. Part I is an overview of Finite Difference Methods. Part II focuses on Finite Element Methods, including an FEM tutorial. Part III deals with Inverse Methods, introducing formal approaches to practical problems which are ill-posed.

Автор: Logan J. David Название: A First Course in Differential Equations ISBN: 0387259635 ISBN-13(EAN): 9780387259635 Издательство: Springer Цена: 6578 р. Наличие на складе: Поставка под заказ.

Описание: While the standard sophomore course on elementary differential equations is typically one semester in length, most of the texts currently being used for these courses have evolved into calculus-like presentations that include a large collection of methods and applications, packaged with state-of-the-art color graphics, student solution manuals, the latest fonts, marginal notes, and web-based supplements. All of this adds up to several hundred pages of text and can be very expensive. Many students do not have the time or desire to read voluminous texts and explore internet supplements. Thats what makes the format of this differential equations book unique. It is a one-semester, brief treatment of the basic ideas, models, and solution methods. Its limited coverage places it somewhere between an outline and a detailed textbook. The author writes concisely, to the point, and in plain language. Many worked examples and exercises are included. A student who works through this primer will have the tools to go to the next level in applying ODEs to problems in engineering, science, and applied mathematics. It will also give instructors, who want more concise coverage, an alternative to existing texts.This text also encourages students to use a computer algebra system to solve problems numerically. It can be stated with certainty that the numerical solution of differential equations is a central activity in science and engineering, and it is absolutely necessary to teach students scientific computation as early as possible. Templates of MATLAB programs that solve differential equations are given in an appendix. Maple and Mathematica commands are given as well. The author taught this material on several ocassions to students who have had a standard three-semester calculus sequence. It has been well received by many students who appreciated having a small, definitive parcel of material to learn. Moreover, this text gives students the opportunity to start reading mathematics at a slightly higher level than experienced in pre-calculus and calculus; not every small detail is included. Therefore the book can be a bridge in their progress to study more advanced material at the junior-senior level, where books leave a lot to the reader and are not packaged with elementary formats.J. David Logan is Professor of Mathematics at the University of Nebraska, Lincoln. He is the author of another recent undergraduate textbook, Applied Partial Differential Equations, 2nd Edition (Springer 2004).

Автор: Olver Название: Applications of Lie Groups to Differential Equations ISBN: 0387950001 ISBN-13(EAN): 9780387950006 Издательство: Springer Рейтинг: Цена: 5115 р. Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents an introduction to applications of Lie groups to differential equations which have proved to be useful in practice. Following an exposition of the applications, this book develops the underlying theory, with many of the topics presented in a novel way, emphasizing explicit examples and computations.

Описание: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Автор: Weintraub, Steven Название: Differential forms ISBN: 0123944031 ISBN-13(EAN): 9780123944030 Издательство: Elsevier Science Рейтинг: Цена: 9504 р. Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Differential forms are a powerful mathematical technique to help students, researchers, and engineers solve problems in geometry and analysis, and their applications. They both unify and simplify results in concrete settings, and allow them to be clearly and effectively generalized to more abstract settings. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems. Differential Forms, 2nd Edition, is a solid resource for students and professionals needing a general understanding of the mathematical theory and to be able to apply that theory into practice.

Автор: Xie Название: Differential Equations for Engineers ISBN: 1107632951 ISBN-13(EAN): 9781107632950 Издательство: Cambridge Academ Рейтинг: Цена: 5981 р. Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.

Описание: The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a ``random noise,'' also known as a ``generalized random field.'' At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals a la Norbert Wiener, an infinite-dimensional Ito-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts.There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation.

Автор: Polyanin, Andrei D. Zaitsev, Valentin F. Moussiaux Название: Handbook of First-Order Partial Differential Equations ISBN: 041527267X ISBN-13(EAN): 9780415272674 Издательство: Taylor&Francis Рейтинг: Цена: 21945 р. Наличие на складе: Поставка под заказ.

Описание: This book contains about 3000 first-order partial differential equations with solutions. New exact solutions to linear and nonlinear equations are included. The text pays special attention to equations of the general form, showing their dependence upon ar

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru