Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Rational Number Theory in the 20th Century, Narkiewicz


Варианты приобретения
Цена: 15372.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Narkiewicz
Название:  Rational Number Theory in the 20th Century
Перевод названия: Рациональная теория чисел в XX веке
ISBN: 9780857295316
Издательство: Springer
Классификация:

ISBN-10: 0857295314
Обложка/Формат: Hardback
Страницы: 668
Вес: 1.15 кг.
Дата издания: 01.09.2011
Серия: Springer Monographs in Mathematics
Язык: English
Издание: 2012 ed.
Иллюстрации: XIV, 654 p.
Размер: 239 x 163 x 46
Читательская аудитория: Professional & vocational
Подзаголовок: From pnt to flt
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Bruns sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermats Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.


Number Theory, Fourier Analysis and Geometric Discrepancy

Автор: Travaglini
Название: Number Theory, Fourier Analysis and Geometric Discrepancy
ISBN: 1107619858 ISBN-13(EAN): 9781107619852
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Geometric discrepancy theory is a rapidly growing modern field. This book provides a complete introduction to the topic with exposition based on classical number theory and Fourier analysis, but assuming no prior knowledge of either. Ideal as a guide to the subject for advanced undergraduate or beginning graduate students.

Computational Excursions in Analysis and Number Theory

Автор: Borwein Peter
Название: Computational Excursions in Analysis and Number Theory
ISBN: 0387954449 ISBN-13(EAN): 9780387954448
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This introduction to computational number theory is centered on a number of problems that live at the interface of analytic, computational and Diophantine number theory, and provides a diverse collection of techniques for solving number- theoretic problems. There are many exercises and open research problems included.

Algebraic Number Theory and Fermat`s Last Theorem, Fourth Edition

Автор: Stewart
Название: Algebraic Number Theory and Fermat`s Last Theorem, Fourth Edition
ISBN: 1498738397 ISBN-13(EAN): 9781498738392
Издательство: Taylor&Francis
Рейтинг:
Цена: 13014.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics--the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work.

New to the Fourth Edition

  • Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z(√14) is Euclidean
  • Presents an important new result: Mihăilescu's proof of the Catalan conjecture of 1844
  • Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem
  • Improves and updates the index, figures, bibliography, further reading list, and historical remarks

Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.

Rational Number Theory in the 20th Century

Автор: W?adys?aw Narkiewicz
Название: Rational Number Theory in the 20th Century
ISBN: 1447127153 ISBN-13(EAN): 9781447127154
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book surveys 20th century progress in classical number theory, from the proof of the Prime Number Theorem in 1896 through the proof of Fermat`s Last Theorem, focusing on the part of number theory that addresses properties of integers and rational numbers.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия