Описание: Written by HPC experts, this book provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. It facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge.
Автор: Li Название: Artificial Intelligence with Uncertainty ISBN: 1584889985 ISBN-13(EAN): 9781584889984 Издательство: Taylor&Francis Рейтинг: Цена: 17609.00 р. Наличие на складе: Поставка под заказ.
Описание: Through mathematical theories, models, and experimental computations, this book explores the uncertainties of knowledge and intelligence that occur during the cognitive processes of human beings. It describes the cloud model, its uncertainties of randomness and fuzziness, and the correlation between them. The book also centers on other physical methods for data mining, such as the data field and knowledge discovery state space. In addition, it presents an inverted pendulum example to discuss reasoning and control with uncertain knowledge as well as provides a cognitive physics model to visualize human thinking with hierarchy.
Автор: Marsland Название: Machine Learning ISBN: 1466583282 ISBN-13(EAN): 9781466583283 Издательство: Taylor&Francis Рейтинг: Цена: 12095.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A Proven, Hands-On Approach for Students without a Strong Statistical Foundation
Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.
Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.
New to the Second Edition
Two new chapters on deep belief networks and Gaussian processes
Reorganization of the chapters to make a more natural flow of content
Revision of the support vector machine material, including a simple implementation for experiments
New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
Additional discussions of the Kalman and particle filters
Improved code, including better use of naming conventions in Python
Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru