Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Theory of Multiple Zeta Values with Applications in Combinat, Eie Minking


Варианты приобретения
Цена: 12989.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Eie Minking
Название:  Theory of Multiple Zeta Values with Applications in Combinat
ISBN: 9789814472630
Издательство: World Scientific Publishing
Классификация:

ISBN-10: 9814472638
Обложка/Формат: Hardback
Страницы: 312
Вес: 0.57 кг.
Дата издания: 24.07.2013
Серия: Mathematics
Язык: English
Размер: 229 x 155 x 23
Читательская аудитория: College/higher education
Ключевые слова: Number systems, MATHEMATICS / Applied,MATHEMATICS / Combinatorics,MATHEMATICS / Number Theory
Поставляется из: Англии
Описание: This is the first book on the theory of multiple zeta values since its birth around 1994. Readers will find that the shuffle products of multiple zeta values are applied to complicated counting problems in combinatorics, and numerous interesting identities are produced that are ready to be used. This will provide a powerful tool to deal with problems in multiple zeta values, both in evaluations and shuffle relations. The volume will benefit graduate students doing research in number theory.


Spectral Theory of the Riemann Zeta-Function

Автор: Motohashi
Название: Spectral Theory of the Riemann Zeta-Function
ISBN: 0521058074 ISBN-13(EAN): 9780521058070
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Professor Motohashi shows that the Riemann zeta function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the function itself.

The Bloch–Kato Conjecture for the Riemann Zeta Function

Автор: Coates
Название: The Bloch–Kato Conjecture for the Riemann Zeta Function
ISBN: 1107492963 ISBN-13(EAN): 9781107492967
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An account of a significant body of recent work that resolves some long-standing mysteries concerning special values of the Riemann zeta function. It brings together many important results from K-theory, motivic cohomology, and Iwasawa theory, accessible at graduate level and above.

Fractal Geometry, Complex Dimensions and Zeta Functions / Geometry and Spectra of Fractal Strings

Автор: Lapidus Michel L., Frankenhuijsen Machiel van
Название: Fractal Geometry, Complex Dimensions and Zeta Functions / Geometry and Spectra of Fractal Strings
ISBN: 0387332855 ISBN-13(EAN): 9780387332857
Издательство: Springer
Рейтинг:
Цена: 7400.00 р.
Наличие на складе: Поставка под заказ.

Описание: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.Key Features: - The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings- Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra- Explicit formulas are extended to apply to the geometric, spectral, and dynamic zeta functions associated with a fractal- Examples of such formulas include Prime Orbit Theorem with error term for self-similar flows, and a tube formula- The method of diophantine approximation is used to study self-similar strings and flows- Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functionsThroughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts.The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.

Bernoulli Numbers and Zeta Functions

Автор: Arakawa Tsuneo
Название: Bernoulli Numbers and Zeta Functions
ISBN: 4431549188 ISBN-13(EAN): 9784431549185
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. a formula for Bernoulli numbers by Stirling numbers; congruences between some class numbers and Bernoulli numbers;


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия