Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Boosting: Foundations and Algorithms, Schapire Robert E., Freund Yoav


Варианты приобретения
Цена: 6772.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-13
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Schapire Robert E., Freund Yoav
Название:  Boosting: Foundations and Algorithms
Перевод названия: Роберт И. Шапир: Усиление. Основы и алгоритмы
ISBN: 9780262526036
Издательство: MIT Press
Классификация:


ISBN-10: 0262526034
Обложка/Формат: Paperback
Страницы: 544
Вес: 0.85 кг.
Дата издания: 10.01.2014
Серия: Adaptive computation and machine learning series
Язык: English
Иллюстрации: 77 b 154 illustrations, unspecified
Размер: 181 x 230 x 24
Читательская аудитория: Professional & vocational
Подзаголовок: Foundations and algorithms
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: США
Описание:

An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones.

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate rules of thumb. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well.

The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.




Concurrent Programming: Algorithms, Principles, and Foundations

Автор: Raynal
Название: Concurrent Programming: Algorithms, Principles, and Foundations
ISBN: 3642320260 ISBN-13(EAN): 9783642320262
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains synchronization and the implementation of concurrent objects, presenting synchronization algorithms while also introducing the theory that underlies the implementation of concurrent objects in the presence of asynchrony and process crashes.

From Computer to Brain / Foundations of Computational Neuroscience

Автор: Lytton William W.
Название: From Computer to Brain / Foundations of Computational Neuroscience
ISBN: 0387955267 ISBN-13(EAN): 9780387955261
Издательство: Springer
Рейтинг:
Цена: 6282.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Biology undergraduates, medical students and life-science graduate students often have limited mathematical skills. Similarly, physics, math and engineering students have little patience for the detailed facts that make up much of biological knowledge. Teaching computational neuroscience as an integrated discipline requires that both groups be brought forward onto common ground. This book does this by making ancillary material available in an appendix and providing basic explanations without becoming bogged down in unnecessary details. The book will be suitable for undergraduates and beginning graduate students taking a computational neuroscience course and also to anyone with an interest in the uses of the computer in modeling the nervous system.

Foundations of Multidimensional and Metric Data Structures,

Автор: Hanan Samet
Название: Foundations of Multidimensional and Metric Data Structures,
ISBN: 0123694469 ISBN-13(EAN): 9780123694461
Издательство: Elsevier Science
Рейтинг:
Цена: 10441.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Discusses multidimensional point data, object and image-based representations, intervals and small rectangles, and high-dimensional datasets. This book includes a comprehensive survey to spatial and multidimensional data structures and algorithms. It also includes implementation details for some of the most useful data structures.

Boosting: Foundations and Algorithms

Автор: Schapire Robert E., Freund Yoav
Название: Boosting: Foundations and Algorithms
ISBN: 0262017180 ISBN-13(EAN): 9780262017183
Издательство: MIT Press
Рейтинг:
Цена: 4037.00 р.
Наличие на складе: Нет в наличии.

Описание:

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.

Foundations of statistical natural language processing

Автор: Manning, Christopher D. Schutze, Hinrich
Название: Foundations of statistical natural language processing
ISBN: 0262133601 ISBN-13(EAN): 9780262133609
Издательство: MIT Press
Рейтинг:
Цена: 19468.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Stochastic Algorithms: Foundations and Applications

Автор: Osamu Watanabe; Thomas Zeugmann
Название: Stochastic Algorithms: Foundations and Applications
ISBN: 3642049435 ISBN-13(EAN): 9783642049439
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 5th International Symposium on Stochastic Algorithms, Foundations and Applications, SAGA 2009, held in Sapporo, Japan, in October 2009. The 15 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 22 submissions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия