Автор: Mangin, Philippe, Kahn, R?mi Название: Superconductivity. ISBN: 3319505254 ISBN-13(EAN): 9783319505251 Издательство: Springer Рейтинг: Цена: 22359.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport...), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding.
This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science...). Engineers working in industry will have a useful introduction to other more applied or specialized material.
Philippe Mangin is emeritus professor of physics at Mines Nancy Graduate School of Science, Engineering and Management of the University of Lorraine, and researcher at the Jean Lamour Institute in France. He is the former director of both the French neutron scattering facility, Leon Brillouin Laboratory in Orsay, and the Material Physics Laboratory in Nancy, and has taught superconductivity to a broad audience, in particular to engineering students.
Remi Kahn is a retired senior research scientist of the French Alternative Energies and Atomic Energy Commission (CEA-Saclay). He worked at the Leon Brillouin Laboratory and was in charge of the experimental areas of INB 101 (the Orphee research reactor).
This work responded to the need to bring an accessible account suitable for a wide spectrum of scientists and engineers.
Given the Debye temperature of an elemental superconductor (SC) and its Tc, BCS theory enables one to predict the value of its gap Δ0 at T = 0, or vice versa. This monograph shows that non-elemental SCs can be similarly dealt with via the generalized BCS equations (GBCSEs) which, given any two parameters of the set {Tc, Δ10, Δ20 > Δ10}, enable one to predict the third. Also given herein are new equations for the critical magnetic field and critical current density of an elemental and a non-elemental SC -- equations that are derived directly from those that govern pairing in them.
The monograph includes topics that are usually not covered in any one text on superconductivity, e.g., BCS-BEC crossover physics, the long-standing puzzle posed by SrTiO3, and heavy-fermion superconductors -- all of which are still imperfectly understood and therefore continue to avidly engage theoreticians. It suggests that addressing the Tcs, Δs and other properties (e.g., number densities of charge carriers) of high-Tc SCs via GBCSEs incorporating chemical potential may lead to tangible clues about raising their Tcs. The final chapter in this monograph deals with solar emission lines and quarkonium spectra because of a feature common between them and superconductivity: existence of a bound state in a medium at finite temperature. This is a problem on which the author has worked for more than 25 years. The treatment in the text is elementary -- even those who have only a cursory familiarity with Feynman diagrams should be able to follow it without much difficulty.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru