Описание: Addresses the topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods. This book presents an area of research that enables the design of materials and structures with better quality, strength and performance parameters. It describes micro and nano scale models along with case studies.
Описание: This book elucidates the correlation of fatigue crack growth data to multiscale cracking, particularly to the understanding of micrographs influenced by mechanical disturbance and thermodynamic variables.
Автор: Banabic Название: Multiscale Modelling in Sheet Metal Forming ISBN: 3319440683 ISBN-13(EAN): 9783319440682 Издательство: Springer Рейтинг: Цена: 20896.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gives a unified presentation of the research performed in the field of multiscale modelling in sheet metal forming over the course of more than thirty years by the members of six teams from internationally acclaimed universities.The first chapter is devoted to the presentation of some recent phenomenological yield criteria (BBC 2005 and BBC 2008) developed at the CERTETA center from the Technical University of Cluj-Napoca. An overview on the crystallographic texture and plastic anisotropy is presented in Chapter 2. Chapter 3 is dedicated to multiscale modelling of plastic anisotropy. The authors describe a new hierarchical multi-scale framework that allows taking into account the evolution of plastic anisotropy during sheet forming processes. Chapter 4 is focused on modelling the evolution of voids in porous metals with applications to forming limit curves and ductile fracture. The chapter details the steps needed for the development of dissipation functions and Gurson-type models for non-quadratic anisotropic plasticity criteria like BBC 2005 and those based on linear transformations. Chapter 5 describes advanced models for the prediction of forming limit curves developed by the authors. Chapter 6 is devoted to anisotropic damage in elasto-plastic materials with structural defects. Finally, Chapter 7 deals with modelling of the Portevin-Le Chatelier (PLC) effect.This volume contains contributions from leading researchers from the Technical University of Cluj-Napoca, Romania, the Catholic University of Leuven, Belgium, Clausthal University of Technology, Germany, Amirkabir University of Technology, Iran, the University of Bucharest, Romania, and the Institute of Mathematics of the Romanian Academy, Romania. It will prove useful to postgraduate students, researchers and engineers who are interested in the mechanical modeling and numerical simulation of sheet metal forming processes.
Автор: Weinberger Название: Multiscale Materials Modeling for Nanomechanics ISBN: 3319334786 ISBN-13(EAN): 9783319334783 Издательство: Springer Рейтинг: Цена: 17468.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a unique combination of chapters that togetherprovide a practical introduction to multiscale modeling applied to nanoscalematerials mechanics. The goal of this book is to present a balancedtreatment of both the theory of the methodology, as well as some practicalaspects of conducting the simulations and models. The first half of thebook covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale.Included in this set of methods are several different concurrent multiscalemethods for bridging time and length scales applicable to mechanics at the nanoscaleregime. The second half of the book presents a range of casestudies from a varied selection of research groups focusing either on a the applicationof multiscale modeling to a specific nanomaterial, or novel analysis techniquesaimed at exploring nanomechanics. Readers are also directed tohelpful sites and other resources throughout the book where the simulationcodes and methodologies discussed herein can be accessed. Emphasis on thepracticality of the detailed techniques is especially felt in the latter halfof the book, which is dedicated to specific examples to studynanomechanics and multiscale materials behavior. An instructive avenue forlearning how to effectively apply these simulation tools to solve nanomechanicsproblems is to study previous endeavors. Therefore, each chapter iswritten by a unique team of experts who have used multiscale materials modelingto solve a practical nanomechanics problem. These chapters provide an extensivepicture of the multiscale materials landscape from problem statement throughthe final results and outlook, providing readers with a roadmap forincorporating these techniques into their own research.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru