Scalable Optimization via Probabilistic Modeling, Martin Pelikan; Kumara Sastry; Erick Cant?-Paz
Автор: Thrun, Sebastian Название: Probabilistic robotics ISBN: 0262201623 ISBN-13(EAN): 9780262201629 Издательство: MIT Press Рейтинг: Цена: 14390.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
An introduction to the techniques and algorithms of the newest field in robotics.
Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
Описание: The book presents highly technical approaches to the probabilistic physics of failure analysis and applications to accelerated life and degradation testing to reliability prediction and assessment. Beside reviewing a select set of important failure mechanisms, the book covers basic and advanced methods of performing accelerated life test and accelerated degradation tests and analyzing the test data. The book includes a large number of very useful examples to help readers understand complicated methods described. Finally, MATLAB, R and OpenBUGS computer scripts are provided and discussed to support complex computational probabilistic analyses introduced.
Описание: Probabilistic Design for Optimization and Robustness: * Presents the theory of modeling with variation using physical models and methods for practical applications on designs more insensitive to variation. * Provides a comprehensive guide to optimization and robustness for probabilistic design.
Автор: Rolf Haenni; Jan-Willem Romeijn; Gregory Wheeler; Название: Probabilistic Logics and Probabilistic Networks ISBN: 9400734433 ISBN-13(EAN): 9789400734432 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Probabilistic Logic and Probabilistic Networks presents a groundbreaking framework within which various approaches to probabilistic logic naturally fit. Additionally, the text shows how to develop computationally feasible methods to mesh with this framework.
Описание: This text gives an interesting and useful blend of the mathematical, probabilistic and statistical tools used in heavy-tail analysis. It is uniquely devoted to heavy-tails and emphasizes both probability modeling and statistical methods for fitting models.
The monographic volume addresses, in a systematic and comprehensive way, the state-of-the-art dependability (reliability, availability, risk and safety, security) of systems, using the Artificial Intelligence framework of Probabilistic Graphical Models (PGM). After a survey about the main concepts and methodologies adopted in dependability analysis, the book discusses the main features of PGM formalisms (like Bayesian and Decision Networks) and the advantages, both in terms of modeling and analysis, with respect to classical formalisms and model languages.
Methodologies for deriving PGMs from standard dependability formalisms will be introduced, by pointing out tools able to support such a process. Several case studies will be presented and analyzed to support the suitability of the use of PGMs in the study of dependable systems.
Автор: Koller Daphne, Friedman Nir Название: Probabilistic Graphical Models: Principles and Techniques ISBN: 0262013193 ISBN-13(EAN): 9780262013192 Издательство: MIT Press Рейтинг: Цена: 21161.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.
Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.
Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Автор: Bass Название: Probabilistic Techniques in Analysis ISBN: 0387943870 ISBN-13(EAN): 9780387943879 Издательство: Springer Рейтинг: Цена: 12012.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Exploring the use of techniques drawn from probability research to tackle problems in mathematical analysis, this study includes discussion of the construction of the Martin boundary, Dahlberg`s Theorem, probabilistic proofs of the boundary Harnack principle, and much more.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru