Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Piecewise-smooth Dynamical Systems, Mario Bernardo; Chris Budd; Alan Richard Champneys


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Mario Bernardo; Chris Budd; Alan Richard Champneys
Название:  Piecewise-smooth Dynamical Systems
ISBN: 9781849965484
Издательство: Springer
Классификация:







ISBN-10: 184996548X
Обложка/Формат: Paperback
Страницы: 483
Вес: 0.71 кг.
Дата издания: 2007
Серия: Applied Mathematical Sciences
Язык: English
Издание: Softcover reprint of
Иллюстрации: 5 tables, black and white; xxii, 482 p.
Размер: 234 x 156 x 26
Читательская аудитория: Professional & vocational
Подзаголовок: Theory and applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level.


Bifurcations In Piecewise-Smooth Continuous Systems

Автор: Simpson David John Warwick
Название: Bifurcations In Piecewise-Smooth Continuous Systems
ISBN: 9814293849 ISBN-13(EAN): 9789814293846
Издательство: World Scientific Publishing
Рейтинг:
Цена: 15998.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. This title presents the results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. It reveals various codimension-two, discontinuity induced bifurcations.

Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes - Application to Reliability

Автор: de Saporta
Название: Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes - Application to Reliability
ISBN: 1848218397 ISBN-13(EAN): 9781848218390
Издательство: Wiley
Рейтинг:
Цена: 22010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Mark H.A. Davis introduced the Piecewise-Deterministic Markov Process (PDMP) class of stochastic hybrid models in an article in 1984. Today it is used to model a variety of complex systems in the fields of engineering, economics, management sciences, biology, Internet traffic, networks and many more. Yet, despite this, there is very little in the way of literature devoted to the development of numerical methods for PDMDs to solve problems of practical importance, or the computational control of PDMPs.

This book therefore presents a collection of mathematical tools that have been recently developed to tackle such problems. It begins by doing so through examples in several application domains such as reliability. The second part is devoted to the study and simulation of expectations of functionals of PDMPs. Finally, the third part introduces the development of numerical techniques for optimal control problems such as stopping and impulse control problems.

Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems

Автор: Feckan, Michal
Название: Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems
ISBN: 012804294X ISBN-13(EAN): 9780128042946
Издательство: Elsevier Science
Рейтинг:
Цена: 11620.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Poincar -Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions.

The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincar mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity.

  • Extends Melnikov analysis of the classic Poincar and Andronov staples, pointing to a general theory for freedom in dimensions of spatial variables and parameters as well as asymptotical results such as stability, instability, and hyperbolicity
  • Presents a toolbox of critical theoretical techniques for many practical examples and models, including non-smooth dynamical systems
  • Provides realistic models based on unsolved discontinuous problems from the literature and describes how Poincar -Andronov-Melnikov analysis can be used to solve them
  • Investigates the relationship between non-smooth systems and their continuous approximations

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия