Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Supervised and Unsupervised Ensemble Methods and their Applications, Oleg Okun


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Oleg Okun
Название:  Supervised and Unsupervised Ensemble Methods and their Applications
ISBN: 9783540789802
Издательство: Springer
Классификация:
ISBN-10: 3540789804
Обложка/Формат: Hardback
Страницы: 194
Вес: 1.00 кг.
Дата издания: 2008
Серия: Studies in Computational Intelligence
Язык: English
Иллюстрации: 50 black & white illustrations, 46 black & white tables
Размер: 234 x 156 x 13
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Ensembles of Clustering Methods and Their Applications.- Cluster Ensemble Methods: from Single Clusterings to Combined Solutions.- Random Subspace Ensembles for Clustering Categorical Data.- Ensemble Clustering with a Fuzzy Approach.- Collaborative Multi-Strategical Clustering for Object-Oriented Image Analysis.- Ensembles of Classification Methods and Their Applications.- Intrusion Detection in Computer Systems Using Multiple Classifier Systems.- Ensembles of Nearest Neighbors for Gene Expression Based Cancer Classification.- Multivariate Time Series Classification via Stacking of Univariate Classifiers.- Gradient Boosting GARCH and Neural Networks for Time Series Prediction.- Cascading with VDM and Binary Decision Trees for Nominal Data.- Erratum.


Applications of Supervised and Unsupervised Ensemble Methods

Автор: Oleg Okun
Название: Applications of Supervised and Unsupervised Ensemble Methods
ISBN: 3642039987 ISBN-13(EAN): 9783642039980
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Expanding upon presentations at last year`s SUEMA (Supervised and Unsupervised Ensemble Methods and Applications) meeting, this volume explores recent developments in the field. Useful examples act as a guide for practitioners in computational intelligence.

Fusion Methods for Unsupervised Learning Ensembles

Автор: Bruno Baruque
Название: Fusion Methods for Unsupervised Learning Ensembles
ISBN: 3642423280 ISBN-13(EAN): 9783642423284
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines the potential of the ensemble meta-algorithm by describing and testing a technique based on the combination of ensembles and statistical PCA that is able to determine the presence of outliers in high-dimensional data sets.

Temporal Data Mining via Unsupervised Ensemble Learning

Автор: Yang Yun
Название: Temporal Data Mining via Unsupervised Ensemble Learning
ISBN: 0128116544 ISBN-13(EAN): 9780128116548
Издательство: Elsevier Science
Рейтинг:
Цена: 7241.00 р.
Наличие на складе: Поставка под заказ.

Описание: Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. . Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. . Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия