Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Inductive Logic Programming, Hendrik Blockeel; Jan Ramon; Jude Shavlik; Prasad


Варианты приобретения
Цена: 9781.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Hendrik Blockeel; Jan Ramon; Jude Shavlik; Prasad
Название:  Inductive Logic Programming
ISBN: 9783540784685
Издательство: Springer
Классификация: ISBN-10: 3540784683
Обложка/Формат: Paperback
Страницы: 318
Вес: 0.50 кг.
Дата издания: 2008
Серия: Lecture Notes in Computer Science
Язык: English
Издание: Illustrated ed
Иллюстрации: Illustrations
Размер: 236 x 155 x 20
Читательская аудитория: Professional & vocational
Подзаголовок: 17th international conference, ilp 2007, corvallis, or, usa, june 19-21, 2007, revised selected papers
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: 17th International Conference ILP 2007 Corvallis OR USA June 19-21 2007 Revised Selected Papers.


Probabilistic Inductive Logic Programming

Автор: Luc De Raedt; Paolo Frasconi; Kristian Kersting; S
Название: Probabilistic Inductive Logic Programming
ISBN: 3540786511 ISBN-13(EAN): 9783540786511
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: One of the key open questions within arti?cial intelligence is how to combine probability and logic with learning. This question is getting an increased - tentioninseveraldisciplinessuchasknowledgerepresentation, reasoningabout uncertainty, data mining, and machine learning simulateously, resulting in the newlyemergingsub?eldknownasstatisticalrelationallearningandprobabil- ticinductivelogicprogramming.Amajordriving forceisthe explosivegrowth in the amount of heterogeneous data that is being collected in the business and scienti?c world. Example domains include bioinformatics, chemoinform- ics, transportation systems, communication networks, social network analysis, linkanalysis, robotics, amongothers.Thestructuresencounteredcanbeass- pleassequencesandtrees(suchasthosearisinginproteinsecondarystructure predictionandnaturallanguageparsing)orascomplexascitationgraphs, the WorldWideWeb, andrelationaldatabases. This book providesan introduction to this ?eld with an emphasison those methods based on logic programming principles. The book is also the main resultofthesuccessfulEuropeanISTFETprojectno.FP6-508861onAppli- tionofProbabilisticInductiveLogicProgramming(APRILII,2004-2007).This projectwascoordinatedbytheAlbertLudwigsUniversityofFreiburg(Germany, Luc De Raedt) and the partners were Imperial College London (UK, Stephen MuggletonandMichaelSternberg), theHelsinkiInstituteofInformationTe- nology(Finland, HeikkiMannila), theUniversit adegliStudidiFlorence(Italy, PaoloFrasconi), andtheInstitutNationaldeRechercheenInformatiqueet- tomatiqueRocquencourt(France, FrancoisFages).Itwasconcernedwiththeory, implementationsandapplicationsofprobabilisticinductivelogicprogramming. Thisstructureisalsore?ectedinthebook. The book starts with an introductory chapter to "Probabilistic Inductive LogicProgramming"byDeRaedtandKersting.Inasecondpart, itprovidesa detailedoverviewofthemostimportantprobabilisticlogiclearningformalisms and systems. We are very pleased and proud that the scientists behind the key probabilistic inductive logic programming systems (also those developed outside the APRIL project) have kindly contributed a chapter providing an overviewoftheircontributions.Thisincludes: relationalsequencelearningte- niques (Kersting et al.), using kernels with logical representations (Frasconi andPasserini), MarkovLogic(Domingosetal.), the PRISMsystem (Satoand Kameya), CLP(BN)(SantosCostaetal.), BayesianLogicPrograms(Kersting andDeRaedt), andtheIndependentChoiceLogic(Poole).Thethirdpartthen provides a detailed account of some show-caseapplications of probabilistic - ductive logic programming, more speci?cally: in protein fold discovery (Chen et al.), haplotyping (Landwehr and Mielik] ainen) and systems biology (Fages andSoliman). The ?nal parttouchesupon sometheoreticalinvestigationsand VI Preface includes chaptersonbehavioralcomparisonof probabilisticlogicprogramming representations(MuggletonandChen)andamodel-theoreticexpressivityan- ysis(Jaeger).


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия