Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Coping with Complexity: Model Reduction and Data Analysis, Alexander N. Gorban; Dirk Roose


Варианты приобретения
Цена: 24456.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Alexander N. Gorban; Dirk Roose
Название:  Coping with Complexity: Model Reduction and Data Analysis
ISBN: 9783642265617
Издательство: Springer
Классификация:




ISBN-10: 3642265618
Обложка/Формат: Paperback
Страницы: 368
Вес: 0.52 кг.
Дата издания: 2010
Серия: Lecture Notes in Computational Science and Engineering
Язык: English
Иллюстрации: 86 black & white illustrations, biography
Размер: 234 x 156 x 19
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This volume contains the extended version of selected talks given at the international research workshop Coping with Complexity: Model Reduction and Data Analysis, Ambleside, UK, August 31 - September 4, 2009.


Model Order Reduction: Theory, Research Aspects and Applications

Автор: Wilhelmus H. Schilders; Henk A. van der Vorst; Joo
Название: Model Order Reduction: Theory, Research Aspects and Applications
ISBN: 3540788409 ISBN-13(EAN): 9783540788409
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Describes the basics of model order reduction and related aspects. This work covers both general and specialized model order reduction techniques for linear and nonlinear systems, and discusses the use of model order reduction techniques in a variety of practical applications. It also contains many advances in model order reduction.

Statistics and Analysis of Scientific Data

Автор: Bonamente
Название: Statistics and Analysis of Scientific Data
ISBN: 1493965700 ISBN-13(EAN): 9781493965700
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The revised second edition of this textbook provides the reader with a solid foundation in probability theory and statistics as applied to the physical sciences, engineering and related fields. It covers a broad range of numerical and analytical methods that are essential for the correct analysis of scientific data, including probability theory, distribution functions of statistics, fits to two-dimensional data and parameter estimation, Monte Carlo methods and Markov chains.

Features new to this edition include:

- a discussion of statistical techniques employed in business science, such as multiple regression analysis of multivariate datasets.
- a new chapter on the various measures of the mean including logarithmic averages.
- new chapters on systematic errors and intrinsic scatter, and on the fitting of data with bivariate errors.
- a new case study and additional worked examples.
- mathematical derivations and theoretical background material have been appropriately marked, to improve the readability of the text.
- end-of-chapter summary boxes, for easy reference.

As in the first edition, the main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the material. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data, as well as exercises and examples to aid the readers' understanding of the topic.

Survival Analysis for Bivariate Truncated Data

Автор: Dai, Hongsheng
Название: Survival Analysis for Bivariate Truncated Data
ISBN: 0128054808 ISBN-13(EAN): 9780128054802
Издательство: Elsevier Science
Рейтинг:
Цена: 9264.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Survival Analysis for Bivariate Truncated Data provides readers with a comprehensive review on the existing works on survival analysis for truncated data, mainly focusing on the estimation of univariate and bivariate survival function. The most distinguishing feature of survival data is known as censoring, which occurs when the survival time can only be exactly observed within certain time intervals. A second feature is truncation, which is often deliberate and usually due to selection bias in the study design. . Truncation presents itself in different ways. For example, left truncation, which is often due to a so-called late entry bias, occurs when individuals enter a study at a certain age and are followed from this delayed entry time. Right truncation arises when only individuals who experienced the event of interest before a certain time point can be observed. Analyzing truncated survival data without considering the potential selection bias may lead to seriously biased estimates of the time to event of interest and the impact of risk factors.

Model Order Reduction: Theory, Research Aspects and Applications

Автор: Wilhelmus H. Schilders; Henk A. van der Vorst; Joo
Название: Model Order Reduction: Theory, Research Aspects and Applications
ISBN: 3642427731 ISBN-13(EAN): 9783642427732
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The goal of this book is to describe the basics of model order reduction and related aspects. This is a high-quality book on industrial mathematics by one of the major research consortia in this field.

Advanced Data Analysis and Modelling in Chemical Engineering

Автор: Marin, Guy B.
Название: Advanced Data Analysis and Modelling in Chemical Engineering
ISBN: 044459485X ISBN-13(EAN): 9780444594853
Издательство: Elsevier Science
Рейтинг:
Цена: 15159.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Advanced Data Analysis and Modeling in Chemical Engineering provides the mathematical foundations of different areas of chemical engineering and describes typical applications. The book presents the key areas of chemical engineering, their mathematical foundations, and corresponding modeling techniques.

Modern industrial production is based on solid scientific methods, many of which are part of chemical engineering. To produce new substances or materials, engineers must devise special reactors and procedures, while also observing stringent safety requirements and striving to optimize the efficiency jointly in economic and ecological terms. In chemical engineering, mathematical methods are considered to be driving forces of many innovations in material design and process development.

Theoretical Foundations of Functional Data Analysis, with an

Автор: Hsing Tailen
Название: Theoretical Foundations of Functional Data Analysis, with an
ISBN: 0470016914 ISBN-13(EAN): 9780470016916
Издательство: Wiley
Рейтинг:
Цена: 10446.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: ?? Provides a concise but rigorous account of the theoretical background of FDA. ?? Introduces topics in various areas of mathematics, probability and statistics from the perspective of FDA. ?? Presents a systematic exposition of the fundamental statistical issues in FDA.

Topological Methods in Data Analysis and Visualization

Автор: Pascucci
Название: Topological Methods in Data Analysis and Visualization
ISBN: 3642150136 ISBN-13(EAN): 9783642150135
Издательство: Springer
Рейтинг:
Цена: 20263.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Topology-based methods are of increasing importance in the analysis and visualization of datasets from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation of large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. . The editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. This book contains the best 20 peer-reviewed papers resulting from the discussions and presentations at the third workshop on Topological Methods in Data Analysis and Visualization , held 2009 in Snowbird, Utah, US. The 2009 TopoInVis workshop follows the two successful workshops in 2005 (Slovakia) and 2007 (Germany).


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия