Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Cертификаты | Хиты | | |
 

Exploitation of Linkage Learning in Evolutionary Algorithms, Ying-ping Chen



Варианты приобретения
Цена: 19634р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 30 авг 2022
Ориентировочная дата поставки: конец Сентября- начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ying-ping Chen
Название:  Exploitation of Linkage Learning in Evolutionary Algorithms
ISBN: 9783642128332
Издательство: Springer
Классификация:
ISBN-10: 3642128335
Обложка/Формат: Hardback
Страницы: 265
Вес: 0.596 кг.
Дата издания: 2010
Серия: Adaptation, Learning, and Optimization
Язык: English
Иллюстрации: 30 colour illustrations, biography
Размер: 234 x 160 x 20
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии



Extending the Scalability of Linkage Learning Genetic Algorithms / Theory & Practice

Автор: Chen Ying-ping
Название: Extending the Scalability of Linkage Learning Genetic Algorithms / Theory & Practice
ISBN: 3540284591 ISBN-13(EAN): 9783540284598
Издательство: Springer
Рейтинг:
Цена: 16169 р.
Наличие на складе: Поставка под заказ.

Описание: Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, most GAs employed in practice nowadays are unable to learn genetic linkage and suffer from the linkage problem. The linkage learning genetic algorithm (LLGA) was proposed to tackle the linkage problem with several specially designed mechanisms. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA's performance in practice. It starts with a survey of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes.

Linkage in Evolutionary Computation

Автор: Ying-ping Chen
Название: Linkage in Evolutionary Computation
ISBN: 3540850678 ISBN-13(EAN): 9783540850670
Издательство: Springer
Рейтинг:
Цена: 22521 р.
Наличие на складе: Поставка под заказ.

Описание: The issue of linkage in GEAs has garnered recognition from researchers. Conventional approaches that rely much on ad hoc tweaking of parameters to control the search by balancing the level of exploitation and exploration are grossly inadequate. This title presents a work which shows that such parameters tweaking based approaches have their limits.

Statistical Genetics of Quantitative Traits / Linkage, Maps and QTL

Автор: Wu Rongling, Ma Changxing, Casella George
Название: Statistical Genetics of Quantitative Traits / Linkage, Maps and QTL
ISBN: 0387203346 ISBN-13(EAN): 9780387203348
Издательство: Springer
Рейтинг:
Цена: 21588 р.
Наличие на складе: Поставка под заказ.

Описание: The book introduces the basic concepts and methods that are useful in the statistical analysis and modeling of DNA-based marker and phenotypic data that arise in agriculture, forrestry, experimental biology, and other fields. It concentrates on the linkage analysis of markers, map construction and quantitative trait locus (QTL) mapping and assumes a background in regression analysis and maximum likelihood approaches. The strengths of this book lie in the construction of general models and algorithms for linkage analysis and QTL mapping in any kind of crossed pedigrees initiated with inbred lines of crops and plant and animal model systems or outbred lines in forest trees and wildlife species.The book includes a detailed description of each approach and the step-by-step demonstration of live-example analyses designed to explain the utilization and usefulness of statistical methods. The book also includes exercise sets and computer codes for all the analyses used.This book can serve as a textbook for graduates and senior undergraduates in genetics, agronomy, forest biology, plant breeding and animal sciences. It will also be useful to researchers and other professionals in the areas of statistics, biology and agriculture.

Exploitation of Linkage Learning in Evolutionary Algorithms

Автор: Ying-ping Chen
Название: Exploitation of Linkage Learning in Evolutionary Algorithms
ISBN: 3642263275 ISBN-13(EAN): 9783642263279
Издательство: Springer
Рейтинг:
Цена: 19634 р.
Наличие на складе: Поставка под заказ.

Описание: The exploitation of linkage learning is enhancing the performance of evolutionary algorithms. This monograph examines recent progress in linkage learning, with a series of focused technical chapters that cover developments and trends in the field.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия