Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Landmark Legislation 1774-2012, Stathis Stephen W


Варианты приобретения
Цена: 25344.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Stathis Stephen W
Название:  Landmark Legislation 1774-2012
ISBN: 9781452292304
Издательство: Sage Publications
Классификация:


ISBN-10: 1452292302
Обложка/Формат: Hardback
Страницы: 568
Вес: 1.73 кг.
Дата издания: 13.03.2014
Серия: Political Science
Язык: English
Издание: 2 revised edition
Размер: 284 x 218 x 39
Читательская аудитория: Professional and scholarly
Ключевые слова: Politics & government
Подзаголовок: Major u.s. acts and treaties
Рейтинг:
Поставляется из: Англии
Описание: This one-volume resource is a must-have for any public or academic library, especially those with strong American history or political science collections.


      Старое издание

The China-Us Partnership to Prevent Spina Bifida: The Evolution of a Landmark Epidemiological Study

Автор: Kowal Deborah
Название: The China-Us Partnership to Prevent Spina Bifida: The Evolution of a Landmark Epidemiological Study
ISBN: 0826520278 ISBN-13(EAN): 9780826520272
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 4712.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In 1983 two doctors, one from each side of the world, decided to form a partnership, and so began a scientific adventure that would improve the odds that babies could be born healthy and whole. Neural tube defects that severely disabled or killed babies were epidemic in China (where the folk term was guai tai--roughly "monster baby"--for an infant whose embryonic neural tube doesn't completely close and whose head and neck may be misshapen or spine may protrude) and a significant problem in the United States, leading teams of researchers from the United States and China to combine forces to recruit more than 285,000 Chinese women and to follow nearly 250,000 pregnancies in an epidemiological study.

Sixteen thousand staff were involved in running the project, which encountered massive bureaucratic obstacles as well as cultural differences, politicking for study designs and funding, the crisis of Tiananmen Square, and testy debates over research ethics. Nevertheless, the researchers persevered in a collaboration that lasted more than three decades and led to landmark findings on the role of folic acid in preventing spina bifida. Fortifying cereal grain products with folic acid became routine in the United States and a growing number of nations around the world: that intervention was named one of the ten great public health achievements of the last decade.

Rough Set Theory: A True Landmark in Data Analysis

Автор: Ajith Abraham; Rafael Falc?n; Rafael Bello
Название: Rough Set Theory: A True Landmark in Data Analysis
ISBN: 3642100627 ISBN-13(EAN): 9783642100628
Издательство: Springer
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Theoretical Contributions to Rough Set Theory.- Rough Sets on Fuzzy Approximation Spaces and Intuitionistic Fuzzy Approximation Spaces.- Categorical Innovations for Rough Sets.- Granular Structures and Approximations in Rough Sets and Knowledge Spaces.- On Approximation of Classifications, Rough Equalities and Rough Equivalences.- Rough Set Data Mining Activities.- Rough Clustering with Partial Supervision.- A Generic Scheme for Generating Prediction Rules Using Rough Sets.- Rough Web Caching.- Software Defect Classification: A Comparative Study of Rough-Neuro-fuzzy Hybrid Approaches with Linear and Non-linear SVMs.- Rough Hybrid Models to Classification and Attribute Reduction.- Rough Sets and Evolutionary Computation to Solve the Feature Selection Problem.- Nature Inspired Population-Based Heuristics for Rough Set Reduction.- Developing a Knowledge-Based System Using Rough Set Theory and Genetic Algorithms for Substation Fault Diagnosis.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия