Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Advanced Structured Prediction, Nowozin Sebastian, Gehler Peter V., Jancsary Jerem


Варианты приобретения
Цена: 11004.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Nowozin Sebastian, Gehler Peter V., Jancsary Jerem
Название:  Advanced Structured Prediction
Перевод названия: Себастиан Новозин: Наиболее точное структурное предсказание
ISBN: 9780262028370
Издательство: MIT Press
Классификация:
ISBN-10: 0262028379
Обложка/Формат: Hardback
Страницы: 440
Вес: 1.10 кг.
Дата издания: 21.11.2014
Серия: Neural information processing series
Язык: English
Иллюстрации: 84 b 168 illustrations, unspecified
Размер: 262 x 206 x 26
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: США
Описание:

An overview of recent work in the field of structured prediction, the building of predictive machine learning models for interrelated and dependent outputs.

The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components.

These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

Sebastian Nowozin is a Researcher in the Machine Learning and Perception group (MLP) at Microsoft Research, Cambridge, England. Peter V. Gehler is a Senior Researcher in the Perceiving Systems group at the Max Planck Institute for Intelligent Systems, Tubingen, Germany. Jeremy Jancsary is a Senior Research Scientist at Nuance Communications, Vienna. Christoph H. Lampert is Assistant Professor at the Institute of Science and Technology Austria, where he heads a group for Computer Vision and Machine Learning.

Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sebastien Giguere, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, Francois Laviolette, Xinghua Lou, Mario Marchand, Andre F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Průsa, Gunnar Ratsch, Amelie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomas Werner, Alan Yuille, Stanislav Zivny





ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия