Описание: Uses the method of maximum likelihood to a large extent to ensure reasonable, and in some cases optimal procedures. This work treats the basic and important topics in multivariate statistics.
Автор: Kuo Название: Introduction to Stochastic Integration ISBN: 0387287205 ISBN-13(EAN): 9780387287201 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Also called Ito calculus, the theory of stochastic integration has applications in virtually every scientific area involving random functions. This introductory textbook provides a concise introduction to the Ito calculus. From the reviews:"Introduction to Stochastic Integration is exactly what the title says.
Автор: Lord Название: An Introduction to Computational Stochastic PDEs ISBN: 0521899907 ISBN-13(EAN): 9780521899901 Издательство: Cambridge Academ Рейтинг: Цена: 18216.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This comprehensive introduction to stochastic partial differential equations incorporates the effects of randomness into real-world models, offering graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. MATLAB (R) codes are included, so that readers can perform computations themselves and solve the test problems discussed.
Автор: Gazzola Название: Geometric Properties for Parabolic and Elliptic PDE`s ISBN: 3319415360 ISBN-13(EAN): 9783319415369 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness, stability and regularity of solutions of initial/boundary value problems) before focusing on the topological and/or geometric aspects. These topics interact with many other areas of research and rely on a wide range of mathematical tools and techniques, both analytic and geometric. The Italian and Japanese mathematical schools have a long history of research on PDEs and have numerous active groups collaborating in the study of the geometric properties of their solutions.