Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

From Big Data to Big Profits: Success with Data and Analytics, Walker Russell


Варианты приобретения
Цена: 8237.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Walker Russell
Название:  From Big Data to Big Profits: Success with Data and Analytics
ISBN: 9780199378326
Издательство: Oxford Academ
Классификация:

ISBN-10: 0199378320
Обложка/Формат: Hardback
Страницы: 312
Вес: 0.59 кг.
Дата издания: 03.08.2015
Язык: English
Иллюстрации: Illustrations
Размер: 164 x 243 x 24
Читательская аудитория: Postgraduate, research & scholarly
Подзаголовок: Success with data and analytics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: In Success with Big Data, Russell Walker investigates the use of internal Big Data to stimulate innovations for operational effectiveness, and the ways in which external Big Data is developed for gauging, or even prompting, customer buying decisions.


Computational and Statistical Methods for Analysing Big Data with

Автор: Shen Liu
Название: Computational and Statistical Methods for Analysing Big Data with
ISBN: 0128037326 ISBN-13(EAN): 9780128037324
Издательство: Elsevier Science
Рейтинг:
Цена: 11620.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration.

"Computational and Statistical Methods for Analysing Big Data with Applications" starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data.

Advanced computational and statistical methodologies for analysing big data are developed.

Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable.

Case studies are discussed to demonstrate the implementation of the developed methods.

Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation.

Computing code/programs are provided where appropriate.

Big Data Management

Автор: Fausto Pedro Garc?a M?rquez; Benjamin Lev
Название: Big Data Management
ISBN: 3319454978 ISBN-13(EAN): 9783319454979
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.

Big Data Computing and Communications

Автор: Wang
Название: Big Data Computing and Communications
ISBN: 3319425528 ISBN-13(EAN): 9783319425528
Издательство: Springer
Рейтинг:
Цена: 8944.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the Second International Conference on Big Data Computing and Communications, BigCom 2016, held in Shenyang, China, in July 2016.

Foundations of Multidimensional and Metric Data Structures,

Автор: Hanan Samet
Название: Foundations of Multidimensional and Metric Data Structures,
ISBN: 0123694469 ISBN-13(EAN): 9780123694461
Издательство: Elsevier Science
Рейтинг:
Цена: 10441.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Discusses multidimensional point data, object and image-based representations, intervals and small rectangles, and high-dimensional datasets. This book includes a comprehensive survey to spatial and multidimensional data structures and algorithms. It also includes implementation details for some of the most useful data structures.

Pro Hadoop Data Analytics

Автор: Koitzsch
Название: Pro Hadoop Data Analytics
ISBN: 1484219090 ISBN-13(EAN): 9781484219096
Издательство: Springer
Рейтинг:
Цена: 5589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Learn advanced analytical techniques and leverage existing toolkits to make your analytic applications more powerful, precise, and efficient. This book provides the right combination of architecture, design, and implementation information to create analytical systems which go beyond the basics of classification, clustering, and recommendation.In Pro Hadoop Data Analytics best practices are emphasized to ensure coherent, efficient development. A complete example system will be developed using standard third-party components which will consist of the toolkits, libraries, visualization and reporting code, as well as support glue to provide a working and extensible end-to-end system.The book emphasizes four important topics:The importance of end-to-end, flexible, configurable, high-performance data pipeline systems with analytical components as well as appropriate visualization results. Best practices and structured design principles. This will include strategic topics as well as the how to example portions.The importance of mix-and-match or hybrid systems, using different analytical components in one application to accomplish application goals. The hybrid approach will be prominent in the examples.Use of existing third-party libraries is key to effective development. Deep dive examples of the functionality of some of these toolkits will be showcased as you develop the example system.
What You'll Learn The what, why, and how of building big data analytic systems with the Hadoop ecosystemLibraries, toolkits, and algorithms to make development easier and more effectiveBest practices to use when building analytic systems with Hadoop, and metrics to measure performance and efficiency of components and systemsHow to connect to standard relational databases, noSQL data sources, and moreUseful case studies and example components which assist you in creating your own systems
Who This Book Is For
Software engineers, architects, and data scientists with an interest in the design and implementation of big data analytical systems using Hadoop, the Hadoop ecosystem, and other associated technologies.
Big Data

Автор: Calheiros, Rodrigo N.
Название: Big Data
ISBN: 0128053941 ISBN-13(EAN): 9780128053942
Издательство: Elsevier Science
Рейтинг:
Цена: 10610.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications.

To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues.

Machine Learning, Optimization, and Big Data

Автор: Pardalos
Название: Machine Learning, Optimization, and Big Data
ISBN: 3319514687 ISBN-13(EAN): 9783319514680
Издательство: Springer
Рейтинг:
Цена: 9224.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes revised selected papers from the Second International Workshop on Machine Learning, Optimization, and Big Data, MOD 2016, held in Volterra, Italy, in August 2016. The 40 papers presented in this volume were carefully reviewed and selected from 97 submissions.

Data Mining and Big Data

Автор: Tan
Название: Data Mining and Big Data
ISBN: 3319409727 ISBN-13(EAN): 9783319409726
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The LNCS volume LNCS 9714 constitutes the refereed proceedings of the International Conference on Data Mining and Big Data, DMBD 2016, held in Bali, Indonesia, in June 2016. The 57 papers presented in this volume were carefully reviewed and selected from 115 submissions.

Permutation Tests for Complex Data - Theory, Applications and Software

Автор: Pesarin
Название: Permutation Tests for Complex Data - Theory, Applications and Software
ISBN: 0470516410 ISBN-13(EAN): 9780470516416
Издательство: Wiley
Рейтинг:
Цена: 17099.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия