Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

A New Concept for Tuning Design Weights in Survey Sampling, Sarjinder Singh


Варианты приобретения
Цена: 17517.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sarjinder Singh
Название:  A New Concept for Tuning Design Weights in Survey Sampling
ISBN: 9780081005941
Издательство: Elsevier Science
Классификация:

ISBN-10: 0081005946
Обложка/Формат: Hardback
Страницы: 300
Вес: 0.46 кг.
Дата издания: 15.11.2015
Язык: English
Размер: 231 x 155 x 20
Подзаголовок: Jackknifing in theory and practice
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

A New Concept for Tuning Design Weights in Survey Sampling: Jackknifing in Theory and Practice introduces the new concept of tuning design weights in survey sampling by presenting three concepts: calibration, jackknifing, and imputing where needed. This new methodology allows survey statisticians to develop statistical software for analyzing data in a more precisely and friendly way than with existing techniques.




Tuning Metaheuristics

Автор: Mauro Birattari
Название: Tuning Metaheuristics
ISBN: 3642101496 ISBN-13(EAN): 9783642101496
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Metaheuristics are a relatively new but already established approachto c- binatorial optimization. A metaheuristic is a generic algorithmic template that can be used for ?nding high quality solutions of hard combinatorial - timization problems. To arrive at a functioning algorithm, a metaheuristic needs to be con?gured: typically some modules need to be instantiated and someparametersneedto betuned.Icallthese twoproblems"structural"and "parametric" tuning, respectively. More generally, I refer to the combination of the two problems as "tuning." Tuning is crucial to metaheuristic optimization both in academic research andforpracticalapplications.Nevertheless, relativelylittle researchhasbeen devoted to the issue. This book shows that the problem of tuning a me- heuristic can be described and solved as a machine learning problem. Using the machine learning perspective, it is possible to give a formal de?nitionofthetuningproblemandtodevelopagenericalgorithmfortuning metaheuristics.Moreover, fromthemachinelearningperspectiveitispossible tohighlightsome?awsinthecurrentresearchmethodologyandtostatesome guidelines for future empirical analysis in metaheuristics research. This book is based on my doctoral dissertation and contains results I have obtained starting from 2001 while working within the Metaheuristics Net- 1 work. During these years I have been a?liated with two research groups: INTELLEKTIK, Technische Universit t Darmstadt, Darmstadt, Germany and IRIDIA, Universit Libre de Bruxelles, Brussels, Belgium. I am the- fore grateful to the research directors of these two groups: Prof. Wolfgang Bibel, Dr. Thomas St tzle, Prof. Philippe Smets, Prof. Hugues Bersini, and Prof. Marco Dorigo.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия