Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Rethinking The Internet Of Things: A Scalable Approach To Connecting Everything 1St Edition, Francis daCosta


Варианты приобретения
Цена: 4186.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Francis daCosta
Название:  Rethinking The Internet Of Things: A Scalable Approach To Connecting Everything 1St Edition
ISBN: 9781430257400
Издательство: Springer
Классификация:

ISBN-10: 1430257407
Обложка/Формат: Paperback
Страницы: 300
Вес: 0.28 кг.
Дата издания: 02.01.2014
Язык: English
Иллюстрации: 75 black & white illustrations, biography
Размер: 230 x 145 x 10
Читательская аудитория: General (us: trade)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Apress is proud to announce that Rethinking the Internet of Things was a 2014 Jolt Award Finalist, the highest honor for a programming book.


Scalable Big Data Architecture

Автор: Bahaaldine Azarmi
Название: Scalable Big Data Architecture
ISBN: 1484213270 ISBN-13(EAN): 9781484213278
Издательство: Springer
Рейтинг:
Цена: 4186.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance.

Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications, which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution.

When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it's often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time.

This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on.

Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data.

Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия