Invariants of Quadratic Differential Forms, Wright
Автор: Rutherford Название: Modular Invariants ISBN: 1107493765 ISBN-13(EAN): 9781107493766 Издательство: Cambridge Academ Рейтинг: Цена: 3008.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Originally published in 1932 as number twenty-seven in the Cambridge Tracts in Mathematics and Mathematical Physics series, this book provides a concise account of the theory of modular invariants as embodied in the work of Dickson, Glenn and Hazlett. Appendices are included.
Автор: Goro Shimura Название: Arithmetic of Quadratic Forms ISBN: 1461426189 ISBN-13(EAN): 9781461426189 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book examines algebraic number theory and the theory of semisimple algebras. It covers classification over an algebraic number field and classification over the ring of algebraic integers.
Автор: Li Weiping Название: Lecture Notes On Knot Invariants ISBN: 9814675954 ISBN-13(EAN): 9789814675956 Издательство: World Scientific Publishing Рейтинг: Цена: 9821.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry.
Автор: Steve Wright Название: Quadratic Residues and Non-Residues ISBN: 3319459546 ISBN-13(EAN): 9783319459547 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru