Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Understanding and Applying Basic Statistical Methods Using R, Wilcox Rand R.


Варианты приобретения
Цена: 10922.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wilcox Rand R.
Название:  Understanding and Applying Basic Statistical Methods Using R
ISBN: 9781119061397
Издательство: Wiley
Классификация:

ISBN-10: 1119061393
Обложка/Формат: Hardback
Страницы: 504
Вес: 0.83 кг.
Дата издания: 29.07.2016
Серия: Psychology
Язык: English
Иллюстрации: Illustrations
Размер: 166 x 243 x 31
Читательская аудитория: Professional & vocational
Ключевые слова: Psychology,Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians.


Data Analysis Using Stata, Third Edition

Автор: Kohler
Название: Data Analysis Using Stata, Third Edition
ISBN: 1597181102 ISBN-13(EAN): 9781597181105
Издательство: Taylor&Francis
Рейтинг:
Цена: 11176.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Analysis Using Stata, Third Edition is a comprehensive introduction to both statistical methods and Stata. Beginners will learn the logic of data analysis and interpretation and easily become self-sufficient data analysts. Readers already familiar with Stata will find it an enjoyable resource for picking up new tips and tricks.

The book is written as a self-study tutorial and organized around examples. It interactively introduces statistical techniques such as data exploration, description, and regression techniques for continuous and binary dependent variables. Step by step, readers move through the entire process of data analysis and in doing so learn the principles of Stata, data manipulation, graphical representation, and programs to automate repetitive tasks. This third edition includes advanced topics, such as factor-variables notation, average marginal effects, standard errors in complex survey, and multiple imputation in a way, that beginners of both data analysis and Stata can understand.

Using data from a longitudinal study of private households, the authors provide examples from the social sciences that are relatable to researchers from all disciplines. The examples emphasize good statistical practice and reproducible research. Readers are encouraged to download the companion package of datasets to replicate the examples as they work through the book. Each chapter ends with exercises to consolidate acquired skills.

Using R for Introductory Statistics, Second Edition

Автор: Verzani
Название: Using R for Introductory Statistics, Second Edition
ISBN: 1466590734 ISBN-13(EAN): 9781466590731
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version.

See What's New in the Second Edition:

  • Increased emphasis on more idiomatic R provides a grounding in the functionality of base R.
  • Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible.
  • Use of knitr package makes code easier to read and therefore easier to reason about.
  • Additional information on computer-intensive approaches motivates the traditional approach.
  • Updated examples and data make the information current and topical.

The book has an accompanying package, UsingR, available from CRAN, R's repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text.

The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.

Multiple Factor Analysis by Example Using R

Автор: Pages
Название: Multiple Factor Analysis by Example Using R
ISBN: 1482205475 ISBN-13(EAN): 9781482205473
Издательство: Taylor&Francis
Рейтинг:
Цена: 13014.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR). The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.

Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition

Автор: Nicholas J. Horton , Ken Kleinman
Название: Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition
ISBN: 1482237369 ISBN-13(EAN): 9781482237368
Издательство: Taylor&Francis
Рейтинг:
Цена: 11789.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Improve Your Analytical Skills

Incorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information.

New to the Second Edition

  • The use of RStudio, which increases the productivity of R users and helps users avoid error-prone cut-and-paste workflows
  • New chapter of case studies illustrating examples of useful data management tasks, reading complex files, making and annotating maps, "scraping" data from the web, mining text files, and generating dynamic graphics
  • New chapter on special topics that describes key features, such as processing by group, and explores important areas of statistics, including Bayesian methods, propensity scores, and bootstrapping
  • New chapter on simulation that includes examples of data generated from complex models and distributions
  • A detailed discussion of the philosophy and use of the knitr and markdown packages for R
  • New packages that extend the functionality of R and facilitate sophisticated analyses
  • Reorganized and enhanced chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots

Easily Find Your Desired Task

Conveniently organized by short, clear descriptive entries, this edition continues to show users how to easily perform an analytical task in R. Users can quickly find and implement the material they need through the extensive indexing, cross-referencing, and worked examples in the text. Datasets and code are available for download on a supplementary website.

Clinical Trial Optimization using R

Название: Clinical Trial Optimization using R
ISBN: 149873507X ISBN-13(EAN): 9781498735070
Издательство: Taylor&Francis
Рейтинг:
Цена: 16078.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Clinical Trial Optimization Using R explores a unified and broadly applicable framework for optimizing decision making and strategy selection in clinical development, through a series of examples and case studies. It provides the clinical researcher with a powerful evaluation paradigm, as well as supportive R tools, to evaluate and select among simultaneous competing designs or analysis options. It is applicable broadly to statisticians and other quantitative clinical trialists, who have an interest in optimizing clinical trials, clinical trial programs, or associated analytics and decision making.

This book presents in depth the Clinical Scenario Evaluation (CSE) framework, and discusses optimization strategies, including the quantitative assessment of tradeoffs. A variety of common development challenges are evaluated as case studies, and used to show how this framework both simplifies and optimizes strategy selection. Specific settings include optimizing adaptive designs, multiplicity and subgroup analysis strategies, and overall development decision-making criteria around Go/No-Go. After this book, the reader will be equipped to extend the CSE framework to their particular development challenges as well.

Statistical models and methods for financial markets

Автор: Lai, Tze Leung Xing, Haipeng
Название: Statistical models and methods for financial markets
ISBN: 1441926682 ISBN-13(EAN): 9781441926685
Издательство: Springer
Рейтинг:
Цена: 10335.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The authors here present statistical methods and models of importance to quantitative finance and links finance theory to market practice via statistical modeling and decision making. They provide basic statistical background as well as in-depth applications.

A Handbook of Statistical Analyses using R, Third Edition

Автор: Hothorn
Название: A Handbook of Statistical Analyses using R, Third Edition
ISBN: 1482204584 ISBN-13(EAN): 9781482204582
Издательство: Taylor&Francis
Рейтинг:
Цена: 10411.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis.

New to the Third Edition

  • Three new chapters on quantile regression, missing values, and Bayesian inference
  • Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables
  • Additional exercises
  • More detailed explanations of R code
  • New section in each chapter summarizing the results of the analyses
  • Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses

Whether you're a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.

Growth Curve Analysis and Visualization Using R

Автор: Mirman
Название: Growth Curve Analysis and Visualization Using R
ISBN: 1466584327 ISBN-13(EAN): 9781466584327
Издательство: Taylor&Francis
Рейтинг:
Цена: 13779.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods. Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results. Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author’s website.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия