Nonparametric Comparative Statics and Stability, Hale Douglas, Lady George, Maybee John
Автор: Henderson Название: Applied Nonparametric Econometrics ISBN: 0521279682 ISBN-13(EAN): 9780521279680 Издательство: Cambridge Academ Рейтинг: Цена: 6653.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignore the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians, discussing basic to advanced nonparametric methods with applications.
Описание: This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
Автор: Brodsky, E., Darkhovsky, B.S. Название: Nonparametric Methods in Change Point Problems ISBN: 0792321227 ISBN-13(EAN): 9780792321224 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume deals with non-parametric methods of change point (disorder) detection in random processes and fields. A systematic account is given of up-to-date developments in this rapidly evolving branch of statistics.
Автор: Wasserman Название: All of Nonparametric Statistics ISBN: 0387251456 ISBN-13(EAN): 9780387251455 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets.
Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T. Название: Bayesian Nonparametric Data Analysis ISBN: 3319189670 ISBN-13(EAN): 9783319189673 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
Автор: Corder Название: Nonparametric Statistics - A Step-by-Step Approach 2e ISBN: 1118840313 ISBN-13(EAN): 9781118840313 Издательство: Wiley Рейтинг: Цена: 13139.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught.
Автор: Fan Jianqing, Yao Qiwei Название: Nonlinear Time Series / Nonparametric and Parametric Methods ISBN: 0387261427 ISBN-13(EAN): 9780387261423 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the contemporary statistical methods and theory of nonlinear time series analysis. The principal focus is on nonparametric and semiparametric techniques developed in the last decade. It covers the techniques for modelling in state-space, in frequency-domain as well as in time-domain. To reflect the integration of parametric and nonparametric methods in analyzing time series data, the book also presents an up-to-date exposure of some parametric nonlinear models, including ARCH/GARCH models and threshold models. A compact view on linear ARMA models is also provided. Data arising in real applications are used throughout to show how nonparametric approaches may help to reveal local structure in high-dimensional data. Important technical tools are also introduced. The book will be useful for graduate students, application-oriented time series analysts, and new and experienced researchers. It will have the value both within the statistical community and across a broad spectrum of other fields such as econometrics, empirical finance, population biology and ecology. The prerequisites are basic courses in probability and statistics. Jianqing Fan, coauthor of the highly regarded book Local Polynomial Modeling, is Professor of Statistics at the University of North Carolina at Chapel Hill and the Chinese University of Hong Kong. His published work on nonparametric modeling, nonlinear time series, financial econometrics, analysis of longitudinal data, model selection, wavelets and other aspects of methodological and theoretical statistics has been recognized with the Presidents' Award from the Committee of Presidents of Statistical Societies, the Hettleman Prize for Artistic and Scholarly Achievement from the University of North Carolina, and by his election as a fellow of the American Statistical Association and the Institute of Mathematical Statistics. Qiwei Yao is Professor of Statistics at the London School of Economics and Political Science. He is an elected member of the International Statistical Institute, and has served on the editorial boards for the Journal of the Royal Statistical Society (Series B) and the Australian and New Zealand Journal of Statistics.
Описание: Consists of 22 research papers in Probability and Statistics. This title includes topics such as nonparametric inference, nonparametric curve fitting, linear model theory, Bayesian nonparametrics, change point problems, time series analysis and asymptotic theory. It presents research in statistical theory.
Автор: Ghosal, Subhashis. Название: Fundamentals of Nonparametric Bayesian Inference ISBN: 0521878268 ISBN-13(EAN): 9780521878265 Издательство: Cambridge Academ Рейтинг: Цена: 12989.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru