Mathematical Statistical Mechanics, Thompson Colin J.
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Malley Название: Statistical Learning for Biomedical Data ISBN: 0521699096 ISBN-13(EAN): 9780521699099 Издательство: Cambridge Academ Рейтинг: Цена: 6494.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.
Описание: Uses the method of maximum likelihood to a large extent to ensure reasonable, and in some cases optimal procedures. This work treats the basic and important topics in multivariate statistics.
Автор: Nachtsheim;Neter;Kutner Название: Applied Linear Statistical Models with Student CD ISBN: 0071122214 ISBN-13(EAN): 9780071122214 Издательство: McGraw-Hill Рейтинг: Цена: 9265.00 р. Наличие на складе: Поставка под заказ.
Описание: "Applied Linear Statistical Models", 5e, is the long established leading authoritative text and reference on statistical modeling. For students in most any discipline where statistical analysis or interpretation is used, ALSM serves as the standard work. The text includes brief introductory and review material, and then proceeds through regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in virtually any college. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.
Автор: Yeomans, J.m. Название: Statistical mechanics of phase transitions ISBN: 0198517300 ISBN-13(EAN): 9780198517306 Издательство: Oxford Academ Рейтинг: Цена: 6493.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This work provides an introduction to the physics which underlies phase transitions and to the theoretical techniques currently at our disposal for understanding them. It will be useful for advanced undergraduates, for post-graduate students undertaking research in related fields, and for established researchers.
Автор: Huang, Kerson, Название: Introduction to statistical physics ISBN: 1420079026 ISBN-13(EAN): 9781420079029 Издательство: Taylor&Francis Рейтинг: Цена: 10717.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by a world-renowned theoretical physicist, this textbook familiarizes advanced undergraduate students with the different aspects of statistical physics. Along with many exercises, it includes a discussion of phase transition in thermodynamics. It also covers stochastic processes.
Автор: Joshi Название: Introduction to Mathematical Portfolio Theory ISBN: 1107042313 ISBN-13(EAN): 9781107042315 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A concise yet comprehensive guide to the mathematics of portfolio theory from a modelling perspective, with discussion of the assumptions, limitations and implementations of the models as well as the theory underlying them. Aimed at advanced undergraduates, this book can be used for self-study or as a course text.
Описание: High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising from random samples (density estimation) or from Gaussian regression/signal in white noise problems.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru