A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Автор: Marsland Название: Machine Learning ISBN: 1466583282 ISBN-13(EAN): 9781466583283 Издательство: Taylor&Francis Рейтинг: Цена: 5851 р. Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A Proven, Hands-On Approach for Students without a Strong Statistical Foundation Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second Edition Two new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of content Revision of the support vector machine material, including a simple implementation for experiments New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron Additional discussions of the Kalman and particle filters Improved code, including better use of naming conventions in Python Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.

Описание: This book provides a thorough introduction to the most important topics in data mining and machine learning. All the topics covered have undergone rapid development and this treatment offers a modern perspective emphasizing the most recent contributions.

Описание: "Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security.

Описание: This book constitutes the refereed proceedings of the Third International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2003, held in Leipzig, Germany, in July 2003.The 33 revised full papers presented together with two invited papers were carefully reviewed and selected from 75 submissions. The papers are organized in topical sections on decision trees; clustering and its applications; support vector machines; case-based reasoning; classification, retrieval, and feature Learning; discovery of frequent or sequential patterns; Bayesian models and methods; association rule mining; and applications.

Автор: Mitra Название: Introduction to Machine Learning and Bioinformatics ISBN: 158488682X ISBN-13(EAN): 9781584886822 Издательство: Taylor&Francis Рейтинг: Цена: 6687 р. Наличие на складе: Нет в наличии.

Описание: Examining the connections between these two increasingly intertwined areas, this text presents a unifying, thorough, and accessible introduction to the basic ideas and latest developments in machine learning and bioinformatics. It describes the major problems in bioinformatics and the concepts and algorithms of machine learning. The authors demonstrate the capabilities of key machine learning techniques, such as hidden Markov models and artificial neural networks, and apply state-of-the-art techniques to bioinformatics problems in structural biology, cancer treatment, and proteomics. They also include exercises at the end of some chapters and offer instructional materials on their website.

Автор: Hardoon Название: Getting Started with Business Analytics ISBN: 1439896534 ISBN-13(EAN): 9781439896532 Издательство: Taylor&Francis Рейтинг: Цена: 4910 р. Наличие на складе: Нет в наличии.

Описание: Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications.The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics.The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data.The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data.Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework fordata mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.

Описание: Introduction to Machine Learning with Applications in Information Security provides a class-tested introduction to a wide variety of machine learning algorithms, reinforced through realistic applications. The book is accessible and doesn’t prove theorems, or otherwise dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts. The book covers core machine learning topics in-depth, including Hidden Markov Models, Principal Component Analysis, Support Vector Machines, and Clustering. It also includes coverage of Nearest Neighbors, Neural Networks, Boosting and AdaBoost, Random Forests, Linear Discriminant Analysis, Vector Quantization, Naive Bayes, Regression Analysis, Conditional Random Fields, and Data Analysis. Most of the examples in the book are drawn from the field of information security, with many of the machine learning applications specifically focused on malware. The applications presented are designed to demystify machine learning techniques by providing straightforward scenarios. Many of the exercises in this book require some programming, and basic computing concepts are assumed in a few of the application sections. However, anyone with a modest amount of programming experience should have no trouble with this aspect of the book. Instructor resources, including PowerPoint slides, lecture videos, and other relevant materialare provided on an accompanying website: http://www.cs.sjsu.edu/~stamp/ML/. For the reader’s benefit, the figures in the book are also available in electronic form, and in color. About the Author Mark Stamp has been a Professor of Computer Science at San Jose State University since 2002. Prior to that, he worked at the National Security Agency (NSA) for seven years, and a Silicon Valley startup company for two years. He received his Ph.D. from Texas Tech University in 1992. His love affair with machine learning began in the early 1990s, when he was working at the NSA, and continues today at SJSU, where he has supervised vast numbers of master’s student projects, most of which involve a combination of information security and machine learning.

Название: Event Mining ISBN: 1466568577 ISBN-13(EAN): 9781466568570 Издательство: Taylor&Francis Рейтинг: Цена: 8254 р. Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Event mining encompasses techniques for automatically and efficiently extracting valuable knowledge from historical event/log data. The field, therefore, plays an important role in data-driven system management. Event Mining: Algorithms and Applications presents state-of-the-art event mining approaches and applications with a focus on computing system management. The book first explains how to transform log data in disparate formats and contents into a canonical form as well as how to optimize system monitoring. It then shows how to extract useful knowledge from data. It describes intelligent and efficient methods and algorithms to perform data-driven pattern discovery and problem determination for managing complex systems. The book also discusses data-driven approaches for the detailed diagnosis of a system issue and addresses the application of event summarization in Twitter messages (tweets). Understanding the interdisciplinary field of event mining can be challenging as it requires familiarity with several research areas and the relevant literature is scattered in diverse publications. This book makes it easier to explore the field by providing both a good starting point for readers not familiar with the topics and a comprehensive reference for those already working in this area.

Автор: Maimon Oded, Rokach Lior Название: Soft Computing for Knowledge Discovery and Data Mining ISBN: 0387699341 ISBN-13(EAN): 9780387699349 Издательство: Springer Рейтинг: Цена: 8414 р. Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important, because it enables modeling and knowledge extraction from abundant data availability.Soft Computing for Knowledge Discovery and Data Mining introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. This book presents practical soft-computing approaches in data mining.Soft Computing for Knowledge Discovery and Data Mining was written to provide investigators in the fields of information systems, engineering, computer science, statistics and management with a profound source for the role of soft computing in data mining. Practitioners and researchers will be particularly interested in the description of real world data mining projects performed with soft computing. The book is also suitable for advanced-level students in computer science.

Автор: Aggarwal Charu C. Название: Data Classification ISBN: 1466586745 ISBN-13(EAN): 9781466586741 Издательство: Taylor&Francis Рейтинг: Цена: 7418 р. Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data.This comprehensive book focuses on three primary aspects of data classification: Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru