Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Quantum Machine Learning: What Quantum Computing Means to Data Mining, Wittek Peter



Варианты приобретения
Цена: 10088р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 26 май 2024
Ориентировочная дата поставки: Июль
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wittek Peter
Название:  Quantum Machine Learning: What Quantum Computing Means to Data Mining
Перевод названия: Питер Уиттек: Изучение квантовой механики. Что квантовые исчисления дают накопителям данных
ISBN: 9780128100400
Издательство: Elsevier Science
Классификация:
ISBN-10: 0128100400
Обложка/Формат: Paperback
Страницы: 176
Вес: 0.268 кг.
Дата издания: 02.09.2016
Язык: English
Иллюстрации: Black & white illustrations
Размер: 208 x 229 x 14
Читательская аудитория: General (us: trade)
Подзаголовок: What quantum computing means to data mining
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. . Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.



Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

A First Course in Machine Learning, Second Edition

Автор: Rogers
Название: A First Course in Machine Learning, Second Edition
ISBN: 1498738486 ISBN-13(EAN): 9781498738484
Издательство: Taylor&Francis
Рейтинг:
Цена: 9437 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The new edition of this popular, undergraduate textbook has been revised and updated to reflect current growth areas in Machine Learning. The new edition includes three new chapters with more detailed discussion of Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models.

Principles and Theory for Data Mining and Machine Learning

Автор: Clarke
Название: Principles and Theory for Data Mining and Machine Learning
ISBN: 0387981349 ISBN-13(EAN): 9780387981345
Издательство: Springer
Рейтинг:
Цена: 27950 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Extensive treatment of the most up-to-date topicsProvides the theory and concepts behind popular and emerging methodsRange of topics drawn from Statistics, Computer Science, and Electrical Engineering

Introduction to Machine Learning with Applications in Information Security

Автор: Stamp
Название: Introduction to Machine Learning with Applications in Information Security
ISBN: 1138626783 ISBN-13(EAN): 9781138626782
Издательство: Taylor&Francis
Рейтинг:
Цена: 8275 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 7837 р.
Наличие на складе: Нет в наличии.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Machine Learning

Автор: Marsland
Название: Machine Learning
ISBN: 1466583282 ISBN-13(EAN): 9781466583283
Издательство: Taylor&Francis
Рейтинг:
Цена: 10889 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

  • Two new chapters on deep belief networks and Gaussian processes
  • Reorganization of the chapters to make a more natural flow of content
  • Revision of the support vector machine material, including a simple implementation for experiments
  • New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
  • Additional discussions of the Kalman and particle filters
  • Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.

Cognitive Computing: Implementing Big Data Machine Learning Solutions

Автор: Hurwitz, Kaufman Marcia, Bowles Adrian
Название: Cognitive Computing: Implementing Big Data Machine Learning Solutions
ISBN: 1118896629 ISBN-13(EAN): 9781118896624
Издательство: Wiley
Рейтинг:
Цена: 6018 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия