Описание: This handbook brings together a comprehensive collection of mathematical material in one location. It also offers a variety of new results interpreted in a form that is particularly useful to engineers, scientists, and applied mathematicians.
Автор: Marcus Название: Markov Processes, Gaussian Processes, and Local Times ISBN: 1107403758 ISBN-13(EAN): 9781107403758 Издательство: Cambridge Academ Рейтинг: Цена: 12038.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Two foremost researchers present important advances in stochastic process theory by linking well-understood (Gaussian) and less well-understood (Markov) classes of processes. It builds to this material through `mini-courses` on the relevant ingredients, which assume only measure-theoretic probability. This original, readable 2006 book is for researchers and advanced graduate students.
Автор: Jondeau Название: Financial Modeling Under Non-Gaussian Distributions ISBN: 1846284198 ISBN-13(EAN): 9781846284199 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The use of Gaussian models when the asset return distributions are not normal could lead to a wrong choice of portfolio, the underestimation of extreme losses or mispriced derivative products. This book deals with the non-Gaussian distributions and addresses the consequences of non-normality and time dependency in asset returns and option prices.
Автор: Mandrekar Название: Stochastic Analysis For Gaussian Ra ISBN: 1498707815 ISBN-13(EAN): 9781498707817 Издательство: Taylor&Francis Рейтинг: Цена: 15312.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).
The book begins with preliminary results on covariance and associated RKHS before introducing the Gaussian process and Gaussian random fields. The authors use chaos expansion to define the Skorokhod integral, which generalizes the It integral. They show how the Skorokhod integral is a dual operator of Skorokhod differentiation and the divergence operator of Malliavin. The authors also present Gaussian processes indexed by real numbers and obtain a Kallianpur-Striebel Bayes' formula for the filtering problem. After discussing the problem of equivalence and singularity of Gaussian random fields (including a generalization of the Girsanov theorem), the book concludes with the Markov property of Gaussian random fields indexed by measures and generalized Gaussian random fields indexed by Schwartz space. The Markov property for generalized random fields is connected to the Markov process generated by a Dirichlet form.
Автор: Rue Название: Gaussian Markov Random Fields ISBN: 1584884320 ISBN-13(EAN): 9781584884323 Издательство: Taylor&Francis Рейтинг: Цена: 24499.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Gaussian Markov Random Field (GMRF) models, most widely used in spatial statistics are presented in this, the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects.
Автор: Mandjes, Michel Название: Large deviations for gaussian queues ISBN: 0470015233 ISBN-13(EAN): 9780470015230 Издательство: Wiley Рейтинг: Цена: 17891.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Demonstrates how the Gaussian traffic model arises naturally, and how the analysis of the corresponding queuing model can be performed. This text provides an introduction to Gaussian queues, and surveys research into the modelling of communications networks. It is useful for postgraduate students in applied probability, and operations research.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru