Uncertainty Quantification in Computational Science: Theory and Application in Fluids and Structural Mechanics, Sarkar Sunetra, Witteveen Jeroen A. S.
Автор: Sullivan, T.J. Название: Introduction to Uncertainty Quantification ISBN: 3319233947 ISBN-13(EAN): 9783319233949 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study.
Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field.
Автор: T. Simmermacher; Scott Cogan; L.G. Horta; R. Barth Название: Topics in Model Validation and Uncertainty Quantification, Volume 4 ISBN: 1489998667 ISBN-13(EAN): 9781489998668 Издательство: Springer Рейтинг: Цена: 26120.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Topics in Model Validation and Uncertainty Quantification, Volume 4, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the fourth volume of six from the Conference, brings together 19 contributions to this important area of research and engineering.
Автор: Todd Simmermacher; Scott Cogan; Babak Moaveni; Cos Название: Topics in Model Validation and Uncertainty Quantification, Volume 5 ISBN: 146146563X ISBN-13(EAN): 9781461465638 Издательство: Springer Рейтинг: Цена: 36570.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Topics in Model Validation and Uncertainty Quantification, Volume : Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the fifth volume of seven from the Conference, brings together contributions to this important area of research and engineering.
Описание: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems.
Автор: Olivier Le Maitre; Omar M Knio Название: Spectral Methods for Uncertainty Quantification ISBN: 9048135192 ISBN-13(EAN): 9789048135196 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents applications of spectral methods to problems of uncertainty propagation and quantification in model-based computations, focusing on the computational and algorithmic features of these methods most useful in dealing with models based on partial differential equations, in particular models arising in simulations of fluid flows.
Автор: Jadamba Название: Uncertainty Quantification In Varia ISBN: 1138626325 ISBN-13(EAN): 9781138626324 Издательство: Taylor&Francis Рейтинг: Цена: 16843.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The primary objective of this book is to present a comprehensive treatment of uncertainty quantification in variational inequalities and some of its generalizations emerging from various network, economic, and engineering models. Some of the developed techniques also apply to machine learning, neural networks, and related fields.