Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Pseudodifferential Equations Over Non-Archimedean Spaces, W. A. Z??iga-Galindo


Варианты приобретения
Цена: 4890.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: W. A. Z??iga-Galindo
Название:  Pseudodifferential Equations Over Non-Archimedean Spaces
ISBN: 9783319467375
Издательство: Springer
Классификация:





ISBN-10: 3319467379
Обложка/Формат: Paperback
Страницы: 176
Вес: 0.31 кг.
Дата издания: 2016
Серия: Lecture notes in mathematics
Язык: English
Иллюстрации: 1 black & white illustrations, biography
Размер: 234 x 156 x 11
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems.
Дополнительное описание: Z??iga-Galindo, Pseudodifferential Equations Over Non-Archimedean Spaces (Lecture Notes in Mathematics 2174)



Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability. (MN-37):

Автор: Geller Daryl
Название: Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability. (MN-37):
ISBN: 0691608296 ISBN-13(EAN): 9780691608297
Издательство: Wiley
Рейтинг:
Цена: 10454.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Many of the operators one meets in several complex variables, such as the famous Lewy operator, are not locally solvable. Nevertheless, such an operator L can be thoroughly studied if one can find a suitable relative parametrix--an operator K such that LK is essentially the orthogonal projection onto the range of L. The analysis is by far most decisive if one is able to work in the real analytic, as opposed to the smooth, setting. With this motivation, the author develops an analytic calculus for the Heisenberg group. Features include: simple, explicit formulae for products and adjoints; simple representation-theoretic conditions, analogous to ellipticity, for finding parametrices in the calculus; invariance under analytic contact transformations; regularity with respect to non-isotropic Sobolev and Lipschitz spaces; and preservation of local analyticity. The calculus is suitable for doing analysis on real analytic strictly pseudoconvex CR manifolds. In this context, the main new application is a proof that the Szego projection preserves local analyticity, even in the three-dimensional setting. Relative analytic parametrices are also constructed for the adjoint of the tangential Cauchy-Riemann operator.

Originally published in 1990.

The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Alternative Pseudodifferential Analysis

Автор: Andr? Unterberger
Название: Alternative Pseudodifferential Analysis
ISBN: 3540779108 ISBN-13(EAN): 9783540779100
Издательство: Springer
Рейтинг:
Цена: 4890.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия