Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Pattern Classification Using Ensemble Methods, Rokach Lior


Варианты приобретения
Цена: 13464.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Rokach Lior
Название:  Pattern Classification Using Ensemble Methods
ISBN: 9789814271066
Издательство: World Scientific Publishing
Классификация:
ISBN-10: 9814271063
Обложка/Формат: Hardback
Страницы: 244
Вес: 0.54 кг.
Дата издания: 02.12.2009
Серия: Series in machine perception and artificial intelligence
Язык: English
Иллюстрации: Illustrations
Размер: 226 x 155 x 23
Читательская аудитория: Postgraduate, research & scholarly
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications.


Support Vector Machines for Pattern Classification

Автор: Shigeo Abe
Название: Support Vector Machines for Pattern Classification
ISBN: 1447125487 ISBN-13(EAN): 9781447125488
Издательство: Springer
Рейтинг:
Цена: 22201.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This guide on the use of SVMs in pattern classification includes a rigorous performance comparison of classifiers and regressors. The book takes the unique approach of focusing on classification rather than covering the theoretical aspects of SVMs.

Matrix Methods in Data Mining and Pattern Recognition

Автор: Lars Eld?n
Название: Matrix Methods in Data Mining and Pattern Recognition
ISBN: 0898716268 ISBN-13(EAN): 9780898716269
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Поставка под заказ.

Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.

Graph Classification And Clustering Based On Vector Space Embedding

Автор: Riesen Kaspar & Bunke Horst
Название: Graph Classification And Clustering Based On Vector Space Embedding
ISBN: 9814304719 ISBN-13(EAN): 9789814304719
Издательство: World Scientific Publishing
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Focuses on a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. This title aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector.

Multiple Fuzzy Classification Systems

Автор: Rafa? Scherer
Название: Multiple Fuzzy Classification Systems
ISBN: 3642436579 ISBN-13(EAN): 9783642436574
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a novel approach for exploratory data analysis with ensembles of various neuro-fuzzy systems. It places emphasis on ensembles that can work on incomplete data, thanks to rough set theory.

Energy Minimization Methods in Computer Vision and Pattern Recognition

Автор: Daniel Cremers; Yuri Boykov; Andrew Blake; Frank R
Название: Energy Minimization Methods in Computer Vision and Pattern Recognition
ISBN: 3642036406 ISBN-13(EAN): 9783642036408
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 7th International Conference EMMCVPR 2009 Bonn Germany August 2427 2009 Proceedings. .

Pattern classification with computer manual, 2r.e.

Автор: Duda, Richard O.
Название: Pattern classification with computer manual, 2r.e.
ISBN: 0471703508 ISBN-13(EAN): 9780471703501
Издательство: Wiley
Рейтинг:
Цена: 27712.00 р.
Наличие на складе: Поставка под заказ.

Описание: The first edition, published in 1973, has become a classic reference in the field. Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.

An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Combining Pattern Classifiers: Methods and Algorithms

Автор: Ludmila I. Kuncheva
Название: Combining Pattern Classifiers: Methods and Algorithms
ISBN: 1118315235 ISBN-13(EAN): 9781118315231
Издательство: Wiley
Рейтинг:
Цена: 15674.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Combined classifiers, which are central to the ubiquitous performance of pattern recognition and machine learning, are generally considered more accurate than single classifiers.

Cellular Image Classification

Автор: Xiang Xu; Xingkun Wu; Feng Lin
Название: Cellular Image Classification
ISBN: 3319476289 ISBN-13(EAN): 9783319476285
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis.
First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical tweezer applications, including selective cell pick-up, pairing, grouping or separation, as well as rotation of cell dimers and clusters. Both translational dragging force and rotational torque in the experiments are in good accordance with the theoretical model. With a simple all-fiber configuration, and low peak irradiation to targeted cells, instrumentation of this optical chuck technology will provide a powerful tool in the ANA-IIF laboratories. Chapters focus on the optical, mechanical and computing systems for the clinical trials. Computer programs for GUI and control of the optical tweezers are also discussed.
to more discriminative local distance vector by searching for local neighbors of the local feature in the class-specific manifolds. Encoding and pooling the local distance vectors leads to salient image representation. Combined with the traditional coding methods, this method achieves higher classification accuracy.
Then, a rotation invariant textural feature of Pairwise Local Ternary Patterns with Spatial Rotation Invariant (PLTP-SRI) is examined. It is invariant to image rotations, meanwhile it is robust to noise and weak illumination. By adding spatial pyramid structure, this method captures spatial layout information. While the proposed PLTP-SRI feature extracts local feature, the BoW framework builds a global image representation. It is reasonable to combine them together to achieve impressive classification performance, as the combined feature takes the advantages of the two kinds of features in different aspects.
Finally, the authors design a Co-occurrence Differential Texton (CoDT) feature to represent the local image patches of HEp-2 cells. The CoDT feature reduces the information loss by ignoring the quantization while it utilizes the spatial relations among the differential micro-texton feature. Thus it can increase the discriminative power. A generative model adaptively characterizes the CoDT feature space of the training data. Furthermore, exploiting a discriminant representation allows for HEp-2 cell images based on the adaptive partitioned feature space. Therefore, the resulting representation is adapted to the classification task. By cooperating with linear Support Vector Machine (SVM) classifier, this framework can exploit the advantages of both generative and discriminative approaches for cellular image classification.
The book is written for those researchers who would like to develop their own programs, and the working MatLab codes are included for all the important algorithms presented. It can also be used as a reference book for graduate students and senior undergraduates in the area of biomedical imaging, image feature extraction, pattern recognition an

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия