Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Algorithms for Data Science, Steele


Варианты приобретения
Цена: 12577.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Steele
Название:  Algorithms for Data Science
Перевод названия: Стил: Алгоритмы для науки о данных
ISBN: 9783319457956
Издательство: Springer
Классификация:



ISBN-10: 3319457950
Обложка/Формат: Hardback
Страницы: 430
Вес: 0.84 кг.
Дата издания: 2016
Язык: English
Издание: 1st ed. 2016
Иллюстрации: 30 illustrations, color; 18 illustrations, black and white; xxiii, 430 p. 48 illus., 30 illus. in color.
Размер: 242 x 163 x 31
Читательская аудитория: Graduate/advanced undergraduate textbook
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:
This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses.
This book has three parts:
(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.
(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Preventions Behavioral Risk Factor Surveillance System.
(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials.This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.

Дополнительное описание: Introduction.- Data Mapping and Data Dictionaries.- Scalable Algorithms and Associative Statistics.- Hadoop and MapReduce.- Data Visualization.- Linear Regression Methods.- Healthcare Analytics.- Cluster Analysis.- k-Nearest Neighbor Prediction Functions.



Distributed Algorithms,

Автор: Nancy A. Lynch
Название: Distributed Algorithms,
ISBN: 1558603484 ISBN-13(EAN): 9781558603486
Издательство: Elsevier Science
Рейтинг:
Цена: 20549.00 р.
Наличие на складе: Поставка под заказ.

Описание: A guide to designing, implementing and analyzing distributed algorithms. It covers problems including resource allocation, communication, consensus among distributed processes, data consistency, deadlock detection, leader election and global snapshots.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия