Автор: Paola Pucci; Fabio Manfredini; Paolo Tagliolato Название: Mapping Urban Practices Through Mobile Phone Data ISBN: 331914832X ISBN-13(EAN): 9783319148328 Издательство: Springer Рейтинг: Цена: 7836.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explains the potential value of using mobile phone data to monitor urban practices and identify rhythms of use in today`s cities.
Описание: Data warehousing is an important topic that is of interest to both the industry and the knowledge engineering research communities. Both data mining and data warehousing technologies have similar objectives and can potentially benefit from each other’s methods to facilitate knowledge discovery.Improving Knowledge Discovery through the Integration of Data Mining Techniques provides insight concerning the integration of data mining and data warehousing for enhancing the knowledge discovery process. Decision makers, academicians, researchers, advanced-level students, technology developers, and business intelligence professionals will find this book useful in furthering their research exposure to relevant topics in knowledge discovery.
Описание: This book constitutes the refereed proceedings of the first China Conference on Knowledge Graph and Semantic Computing, CCKS, held in Beijing, China, in September 2016.The 19 revised full papers presented together with 6 shared tasks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on knowledge representation and learning; knowledge graph construction and information extraction; linked data and knowledge-based systems; shared tasks.
Автор: Ivan Название: The Rise of Big Spatial Data ISBN: 3319451227 ISBN-13(EAN): 9783319451220 Издательство: Springer Рейтинг: Цена: 30745.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16–18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation.Welcome to dawn of the big data era: though it’s in sight, it isn’t quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions. >Entering the era of big spatial data calls for finding solutions that address all “small data” issues that soon create “big data” troubles. Resilience for big spatial data means solving the heterogeneity of spatial data sources (in topics, purpose, completeness, guarantee, licensing, coverage etc.), large volumes (from gigabytes to terabytes and more), undue complexity of geo-applications and systems (i.e. combination of standalone applications with web services, mobile platforms and sensor networks), neglected automation of geodata preparation (i.e. harmonisation, fusion), insufficient control of geodata collection and distribution processes (i.e. scarcity and poor quality of metadata and metadata systems), limited analytical tool capacity (i.e. domination of traditional causal-driven analysis), low visual system performance, inefficient knowledge-discovery techniques (for transformation of vast amounts of information into tiny and essential outputs) and much more. These trends are accelerating as sensors become more ubiquitous around the world.
Описание: This book aims to identify promising future developmental opportunities and applications for Tech Mining. Specifically, the enclosed contributions will pursue three converging themes:The increasing availability of electronic text data resources relating to Science, Technology and Innovation (ST&I).The multiple methods that are able to treat this data effectively and incorporate means to tap into human expertise and interests.Translating those analyses to provide useful intelligence on likely future developments of particular emerging S&T targets. Tech Mining can be defined as text analyses of ST&I information resources to generate Competitive Technical Intelligence (CTI). It combines bibliometrics and advanced text analytic, drawing on specialized knowledge pertaining to ST&I. Tech Mining may also be viewed as a special form of “Big Data” analytics because it searches on a target emerging technology (or key organization) of interest in global databases. One then downloads, typically, thousands of field-structured text records (usually abstracts), and analyses those for useful CTI. Forecasting Innovation Pathways (FIP) is a methodology drawing on Tech Mining plus additional steps to elicit stakeholder and expert knowledge to link recent ST&I activity to likely future development. A decade ago, we demeaned Management of Technology (MOT) as somewhat self-satisfied and ignorant. Most technology managers relied overwhelmingly on casual human judgment, largely oblivious of the potential of empirical analyses to inform R&D management and science policy. CTI, Tech Mining, and FIP are changing that. The accumulation of Tech Mining research over the past decade offers a rich resource of means to get at emerging technology developments and organizational networks to date. Efforts to bridge from those recent histories of development to project likely FIP, however, prove considerably harder. One focus of this volume is to extend the repertoire of information resources; that will enrich FIP.Featuring cases of novel approaches and applications of Tech Mining and FIP, this volume will present frontier advances in ST&I text analytics that will be of interest to students, researchers, practitioners, scholars and policy makers in the fields of R&D planning, technology management, science policy and innovation strategy.
Автор: Lau John Название: Through-Silicon Vias for 3D Integration ISBN: 0071785140 ISBN-13(EAN): 9780071785143 Издательство: McGraw-Hill Рейтинг: Цена: 22306.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This professional book focuses on the latest cost- and space-saving methods of 3D integrated circuits-essential for the development of low-cost, high-performance electronic and optoelectronic products.
Автор: Amin Ash Название: Seeing Like a City ISBN: 0745664261 ISBN-13(EAN): 9780745664262 Издательство: Wiley Рейтинг: Цена: 2691.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Seeing like a city means recognizing that cities are living things made up of a tangle of networks, built up from the agency of countless actors. Cities must not be considered as expressions of larger paradigms or sites of human effort and organization alone.
Автор: Ahmed Название: Big and Complex Data Analysis ISBN: 3319415727 ISBN-13(EAN): 9783319415727 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data.
Автор: Mavromoustakis Название: Advances in Mobile Cloud Computing and Big Data in the 5G Era ISBN: 331945143X ISBN-13(EAN): 9783319451435 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reports on the latest advances on the theories, practices, standards and strategies that are related to the modern technology paradigms, the Mobile Cloud computing (MCC) and Big Data, as the pillars and their association with the emerging 5G mobile networks.The book includes 15 rigorously refereed chapters written by leading international researchers, providing the readers with technical and scientific information about various aspects of Big Data and Mobile Cloud Computing, from basic concepts to advanced findings, reporting the state-of-the-art on Big Data management. It demonstrates and discusses methods and practices to improve multi-source Big Data manipulation techniques, as well as the integration of resources availability through the 3As (Anywhere, Anything, Anytime) paradigm, using the 5G access technologies.
Автор: Rabl Название: Big Data Benchmarking ISBN: 3319497472 ISBN-13(EAN): 9783319497471 Издательство: Springer Рейтинг: Цена: 5870.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the thoroughly refereed post-workshop proceedings of the 6th International Workshop on Big Data Benchmarking, WBDB 2015, held in Toronto, ON, Canada, in June 2015 and the 7th International Workshop, WBDB 2015, held in New Delhi, India, in December 2015.
Автор: Wong Название: Big Data Analytics in Genomics ISBN: 3319412787 ISBN-13(EAN): 9783319412788 Издательство: Springer Рейтинг: Цена: 23757.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.
This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.
Автор: Angelov Название: Advances in Big Data ISBN: 3319478974 ISBN-13(EAN): 9783319478975 Издательство: Springer Рейтинг: Цена: 27950.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book offers a timely snapshot of neural network technologies as a significant component of big data analytics platforms. It promotes new advances and research directions in efficient and innovative algorithmic approaches to analyzing big data (e.g. deep networks, nature-inspired and brain-inspired algorithms); implementations on different computing platforms (e.g. neuromorphic, graphics processing units (GPUs), clouds, clusters); and big data analytics applications to solve real-world problems (e.g. weather prediction, transportation, energy management). The book, which reports on the second edition of the INNS Conference on Big Data, held on October 23–25, 2016, in Thessaloniki, Greece, depicts an interesting collaborative adventure of neural networks with big data and other learning technologies.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru