Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Spectral Theory of Infinite-Area Hyperbolic Surfaces, Borthwick


Варианты приобретения
Цена: 15372.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Borthwick
Название:  Spectral Theory of Infinite-Area Hyperbolic Surfaces
ISBN: 9783319338750
Издательство: Springer
Классификация:






ISBN-10: 3319338757
Обложка/Формат: Hardback
Страницы: 463
Вес: 0.94 кг.
Дата издания: 2016
Серия: Progress in Mathematics
Язык: English
Издание: 2 rev ed
Иллюстрации: 27 black & white illustrations, 37 colour illustrations, 29 colour tables, biography
Размер: 165 x 243 x 28
Читательская аудитория: General (us: trade)
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added.Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution.The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition:The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it. (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)

Дополнительное описание: Introduction.- Hyperbolic Surfaces.- Selberg Theory for Finite-Area Hyperbolic Surfaces.- Spectral Theory for the Hyperbolic Plane.- Model Resolvents for Cylinders.- The Resolvent.- Spectral and Scattering Theory.- Resonances and Scattering Poles.- Growth



Finite Volume Methods for Hyperbolic Problems

Автор: Randall J. LeVeque
Название: Finite Volume Methods for Hyperbolic Problems
ISBN: 0521009243 ISBN-13(EAN): 9780521009249
Издательство: Cambridge Academ
Рейтинг:
Цена: 11563.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия