Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data, Sutradhar


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sutradhar
Название:  Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data
ISBN: 9783319312583
Издательство: Springer
Классификация:

ISBN-10: 3319312588
Обложка/Формат: Paperback
Страницы: 256
Вес: 0.43 кг.
Дата издания: 2016
Серия: Lecture Notes in Statistics - Proceedings
Язык: English
Иллюстрации: 6 black & white illustrations, 6 colour illustrations, biography
Размер: 234 x 156 x 15
Читательская аудитория: General (us: trade)
Основная тема: Statistics
Подзаголовок: Proceedings of the 2015 International Symposium in Statistics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This proceedings volume contains eight selected papers thatwere presented in the International Symposium in Statistics (ISS) 2015 OnAdvances in Parametric and Semi-parametric Analysis of Multivariate, TimeSeries, Spatial-temporal, and Familial-longitudinal Data, held in St. John`s,Canada from July 6 to 8, 2015.


A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

Автор: Hald Anders
Название: A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935
ISBN: 0387464085 ISBN-13(EAN): 9780387464084
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a history of parametric statistical inference, written by one of the most important historians of statistics of the 20th century, Anders Hald. This book can be viewed as a follow-up to his two most recent books, although this current text is much more streamlined and contains new analysis of many ideas and developments. And unlike his other books, which were encyclopedic by nature, this book can be used for a course on the topic, the only prerequisites being a basic course in probability and statistics.The book is divided into five main sections:* Binomial statistical inference;* Statistical inference by inverse probability;* The central limit theorem and linear minimum variance estimation by Laplace and Gauss;* Error theory, skew distributions, correlation, sampling distributions;* The Fisherian Revolution, 1912-1935.Throughout each of the chapters, the author provides lively biographical sketches of many of the main characters, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. He also examines the roles played by DeMoivre, James Bernoulli, and Lagrange, and he provides an accessible exposition of the work of R.A. Fisher.This book will be of interest to statisticians, mathematicians, undergraduate and graduate students, and historians of science.

Nonlinear Time Series / Nonparametric and Parametric Methods

Автор: Fan Jianqing, Yao Qiwei
Название: Nonlinear Time Series / Nonparametric and Parametric Methods
ISBN: 0387261427 ISBN-13(EAN): 9780387261423
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the contemporary statistical methods and theory of nonlinear time series analysis. The principal focus is on nonparametric and semiparametric techniques developed in the last decade. It covers the techniques for modelling in state-space, in frequency-domain as well as in time-domain. To reflect the integration of parametric and nonparametric methods in analyzing time series data, the book also presents an up-to-date exposure of some parametric nonlinear models, including ARCH/GARCH models and threshold models. A compact view on linear ARMA models is also provided. Data arising in real applications are used throughout to show how nonparametric approaches may help to reveal local structure in high-dimensional data. Important technical tools are also introduced. The book will be useful for graduate students, application-oriented time series analysts, and new and experienced researchers. It will have the value both within the statistical community and across a broad spectrum of other fields such as econometrics, empirical finance, population biology and ecology. The prerequisites are basic courses in probability and statistics. Jianqing Fan, coauthor of the highly regarded book Local Polynomial Modeling, is Professor of Statistics at the University of North Carolina at Chapel Hill and the Chinese University of Hong Kong. His published work on nonparametric modeling, nonlinear time series, financial econometrics, analysis of longitudinal data, model selection, wavelets and other aspects of methodological and theoretical statistics has been recognized with the Presidents' Award from the Committee of Presidents of Statistical Societies, the Hettleman Prize for Artistic and Scholarly Achievement from the University of North Carolina, and by his election as a fellow of the American Statistical Association and the Institute of Mathematical Statistics. Qiwei Yao is Professor of Statistics at the London School of Economics and Political Science. He is an elected member of the International Statistical Institute, and has served on the editorial boards for the Journal of the Royal Statistical Society (Series B) and the Australian and New Zealand Journal of Statistics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия