Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Geostatistical Functional Data Analysis, Mateu


Варианты приобретения
Цена: 15674.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Mateu
Название:  Geostatistical Functional Data Analysis
ISBN: 9781119387848
Издательство: Wiley
Классификация:
ISBN-10: 1119387841
Обложка/Формат: Hardback
Страницы: 300
Вес: 0.78 кг.
Дата издания: 23.03.2018
Язык: English
Размер: 230 x 160 x 31
Основная тема: Environmental Statistics & Environmetrics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание:

This book presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The editors link together for the first time the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields.

Leading experts in the field, the Editors have put together a collection of chapters covering state-of-the-art methods in this area. The individual chapters combine formal statements of the results including mathematical proofs with informal and na ve statements of classical and new results.This book serves the scientific community to know what has been done so far, and to know what type of open questions need of future answers.

After an introduction and brief overview, the book includes the following:

  • A detailed exposition of the spatial kriging methodology when dealing with functions.
  • A detailed exposition of more classical statistical techniques already adapted to the functional case and now extended in the right way to handle spatial correlations. Learning ANOVA, regression, clustering methods is crucial for a correct use of the statistical methods when the spatial correlation is present among a collection of curves sampled in a region.
  • A thorough guide to understanding similarities and differences between spatio-temporal data analysis and functional data analysis. The reader will be guided in terms of modelling and computational issues.

The information here allows the reader not only to fully understand kriging methods, but to use the most innovative functional methods adapted to spatially correlated functions, to deal with spatio-temporal datasets from a functional perspective, and to being able to handle massive databases from a more computational perspective. This book provides a complete an up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field.




Recent Advances in Functional Data Analysis and Related Topics

Автор: Fr?d?ric Ferraty
Название: Recent Advances in Functional Data Analysis and Related Topics
ISBN: 3790828335 ISBN-13(EAN): 9783790828337
Издательство: Springer
Рейтинг:
Цена: 25853.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The failure of standard multivariate statistics to analyze such functional data has led the statistical community to develop appropriate statistical methodologies, called Functional Data Analysis (FDA).

Spatial and Spatio-Temporal Geostatistical Modeling and Kriging

Автор: Fernandez-Avile G., Montero Jos? M., Fern?ndez-Avil? G.
Название: Spatial and Spatio-Temporal Geostatistical Modeling and Kriging
ISBN: 1118413180 ISBN-13(EAN): 9781118413180
Издательство: Wiley
Рейтинг:
Цена: 11238.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R.

Geostatistical Reservoir Modeling

Автор: Deutsch Clayton V., Pyrcz Michael J.
Название: Geostatistical Reservoir Modeling
ISBN: 0199731446 ISBN-13(EAN): 9780199731442
Издательство: Oxford Academ
Рейтинг:
Цена: 15206.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A revised edition that provides a full update on the most current methods, tools, and research in petroleum geostatistics.

Theoretical Foundations of Functional Data Analysis, with an

Автор: Hsing Tailen
Название: Theoretical Foundations of Functional Data Analysis, with an
ISBN: 0470016914 ISBN-13(EAN): 9780470016916
Издательство: Wiley
Рейтинг:
Цена: 10446.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: ?? Provides a concise but rigorous account of the theoretical background of FDA. ?? Introduces topics in various areas of mathematics, probability and statistics from the perspective of FDA. ?? Presents a systematic exposition of the fundamental statistical issues in FDA.

Functional Data Analysis

Автор: James Ramsay; B. W. Silverman
Название: Functional Data Analysis
ISBN: 1441923004 ISBN-13(EAN): 9781441923004
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields. Much of the material is based on the authors' own work, some of which appears here for the first time. Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He draws on his collaboration with researchers in speech articulation, motor control, meteorology, psychology, and human physiology to illustrate his technical contributions to functional data analysis in a wide range of statistical and application journals. Bernard Silverman, author of the highly regarded "Density Estimation for Statistics and Data Analysis," and coauthor of "Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach," is Professor of Statistics at Bristol University. His published work on smoothing methods and other aspects of applied, computational, and theoretical statistics has been recognized by the Presidents' Award of the Committee of Presidents of Statistical Societies, and the award of two Guy Medals by the Royal Statistical Society.

Nonparametric Functional Data Analysis

Автор: Fr?d?ric Ferraty; Philippe Vieu
Название: Nonparametric Functional Data Analysis
ISBN: 1441921419 ISBN-13(EAN): 9781441921413
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.

Functional and Shape Data Analysis

Автор: Srivastava
Название: Functional and Shape Data Analysis
ISBN: 149394018X ISBN-13(EAN): 9781493940189
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges.Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия