Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Theory of Ridge Regression Estimators with Applica tions, Saleh


Варианты приобретения
Цена: 16466.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Saleh
Название:  Theory of Ridge Regression Estimators with Applica tions
ISBN: 9781118644614
Издательство: Wiley
Классификация:
ISBN-10: 1118644611
Обложка/Формат: Hardback
Страницы: 384
Вес: 0.73 кг.
Дата издания: 26.03.2019
Серия: Wiley series in probability and statistics
Язык: English
Размер: 159 x 236 x 19
Читательская аудитория: Professional & vocational
Ключевые слова: Mathematics
Основная тема: Regression Analysis
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание:

This book discusses current methods of estimation in linearmodels. In particular, the authors address the methodology oflinear multiple regression models that plays an important role inalmost every scientific investigations in various fields, including economics, engineering, and biostatistics. Thestandard estimation method for regression parameters is theordinary least square (OLS) principal where residual squared errorsare minimized. Applied statisticians are often not satisfied withOLS estimators when the design matrix is ill-conditioned, leadingto a multicollinearity problem and large variances that make theprediction inaccurate. This book details theridge regression estimator, which was developed to combat themulticollinearity problem. Another estimator, called theLiu-estimator due to Liu Kejian, is also addressed since itprovides a competing resolution to the multicollinearityproblem. The ridge regression estimators are complicatednon-linear functions of the ridge parameter, whereas, theLiu estimators are a linear function of the shrinkage parameter.With a focus on the ridge regression and LIU estimators, this bookprovides expanded coverage beyond the usual preliminary test andStein type estimator. In this case, we propose a class of compositeestimators that are obtained by multiplying the OLS, restrictedOLS, preliminary test OLS, and Stein-type OLS by the ridgefactor and Liu-factor. This research is asignificant step towards the study of dominance properties as wellas the comparison of the extent of LASSO properties. In addition, research materials involving shrinkage and model selection forlinear regression models are provided. Topical coverageincludes: preliminaries; linear regression models; multipleregression models; measurement error models; generalized linearmodels; and autoregressive Gaussian processes.




Current topics in the theory and application of latent variable models

Название: Current topics in the theory and application of latent variable models
ISBN: 0415637783 ISBN-13(EAN): 9780415637787
Издательство: Taylor&Francis
Рейтинг:
Цена: 7961.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent developments in the theory and application of latent variable models (LVMs) by some of the most prominent researchers in the field. Topics covered involve a range of LVM frameworks including item response theory, structural equation modeling, factor analysis, and latent curve modeling, as well as various non-standard data structures and innovative applications. The book is divided into two sections, although several chapters cross these content boundaries.  Part one focuses on complexities which involve the adaptation of latent variables models in research problems where real-world conditions do not match conventional assumptions.  Chapters in this section cover issues such as analysis of dyadic data and complex survey data, as well as analysis of categorical variables.  Part two of the book focuses on drawing real-world meaning from results obtained in LVMs. In this section there are chapters examining issues involving assessment of model fit, the nature of uncertainty in parameter estimates, inferences, and the nature of latent variables and individual differences. This book appeals to researchers and graduate students interested in the theory and application of latent variable models. As such, it serves as a supplementary reading in graduate level courses on latent variable models. Prerequisites include basic knowledge of latent variable models.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия