Описание: The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gℓ∞ of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras -- such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations -- simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.
Автор: Fuchs/Schweigert Название: Symmetries, Lie Algebras and Representations ISBN: 0521541190 ISBN-13(EAN): 9780521541190 Издательство: Cambridge Academ Рейтинг: Цена: 13306.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.
Автор: Alexander V. Razumov , Mikhail V. Saveliev Название: Lie Algebras, Geometry, and Toda-Type Systems ISBN: 0521479231 ISBN-13(EAN): 9780521479233 Издательство: Cambridge Academ Рейтинг: Цена: 7128.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A comprehensive introduction to group algebraic and geometric methods for study of nonlinear integrable systems of Toda type. Written in an accessible `lecture note` style with many examples and exercises to illustrate key points and to reinforce understanding.
Автор: Balachandran Aiyalam P Et Al Название: Group Theory And Hopf Algebras: Lectures For Physicists ISBN: 9814322202 ISBN-13(EAN): 9789814322201 Издательство: World Scientific Publishing Рейтинг: Цена: 11563.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Suitable for graduate students and research workers in theoretical physics who want a thorough introduction to group theory and Hopf algebras, this title discusses finite and Lie groups as well as Hopf algebras.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru