Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Probabilistic Theory of Pattern Recognition, 


Варианты приобретения
Цена: 12577.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Probabilistic Theory of Pattern Recognition
ISBN: 9781461268772
Издательство: Springer
Классификация:
ISBN-10: 146126877X
Обложка/Формат: Paperback
Страницы: 638
Вес: 0.91 кг.
Дата издания: 22.11.2013
Язык: English
Размер: 234 x 156 x 34
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: Pattern recognition presents one of the most significant challenges for scientists and engineers, and many different approaches have been proposed. The aim of this book is to provide a self-contained account of probabilistic analysis of these approaches. The book includes a discussion of distance measures, nonparametric methods based on kernels or nearest neighbors, Vapnik-Chervonenkis theory, epsilon entropy, parametric classification, error estimation, free classifiers, and neural networks. Wherever possible, distribution-free properties and inequalities are derived. A substantial portion of the results or the analysis is new. Over 430 problems and exercises complement the material.


Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Handwriting Recognition / Soft Computing and Probabilistic Approaches

Автор: Liu Zhi-Qiang, Cai Jin-Hai, Buse Richard
Название: Handwriting Recognition / Soft Computing and Probabilistic Approaches
ISBN: 3540401776 ISBN-13(EAN): 9783540401773
Издательство: Springer
Рейтинг:
Цена: 9782.00 р. 13974.00 -30%
Наличие на складе: Есть (1 шт.)
Описание: This book takes a fresh look at the problem of unconstrained handwriting recognition and introduces the reader to new techniques for the recognition of written words and characters using statistical and soft computing approaches. The types of uncertainties and variations present in handwriting data are discussed in detail. The book presents several algorithms that use modified hidden Markov models and Markov random field models to simulate the handwriting data statistically and structurally in a single framework. The book explores methods that use fuzzy logic and fuzzy sets for handwriting recognition. The effectiveness of these techniques is demonstrated through extensive experimental results and real handwritten characters and words.

Neural Networks for Pattern Recognition

Автор: Bishop, Christopher M.
Название: Neural Networks for Pattern Recognition
ISBN: 0198538642 ISBN-13(EAN): 9780198538646
Издательство: Oxford Academ
Рейтинг:
Цена: 13939.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is the first to provide a comprehensive account of neural networks from a statistical perspective. Its emphasis is on pattern recognition, which currently represents the area of greatest applicability for neural networks. By focusing on pattern recognition, the book provides a much more extensive treatment of many topics than is available in earlier books.

Probabilistic Graphical Models: Principles and Techniques

Автор: Koller Daphne, Friedman Nir
Название: Probabilistic Graphical Models: Principles and Techniques
ISBN: 0262013193 ISBN-13(EAN): 9780262013192
Издательство: MIT Press
Рейтинг:
Цена: 21161.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.

Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.

Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Pattern Recognition,

Автор: Sergios Theodoridis
Название: Pattern Recognition,
ISBN: 1597492728 ISBN-13(EAN): 9781597492720
Издательство: Elsevier Science
Рейтинг:
Цена: 14483.00 р.
Наличие на складе: Поставка под заказ.

Описание: Considers classical and theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. This book provides an self-contained volume encapsulating this spectrum of information.

Probabilistic Theory of Mean Field Games with Applications II

Автор: Ren? Carmona; Fran?ois Delarue
Название: Probabilistic Theory of Mean Field Games with Applications II
ISBN: 3319564358 ISBN-13(EAN): 9783319564357
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications.

Probabilistic Theory of Mean Field Games with Applications I

Автор: Ren? Carmona; Fran?ois Delarue
Название: Probabilistic Theory of Mean Field Games with Applications I
ISBN: 3319564374 ISBN-13(EAN): 9783319564371
Издательство: Springer
Рейтинг:
Цена: 19496.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications.

Fixed Point Theory in Probabilistic Metric Spaces

Автор: O. Hadzic; E. Pap
Название: Fixed Point Theory in Probabilistic Metric Spaces
ISBN: 9048158753 ISBN-13(EAN): 9789048158751
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Probabilistic Methods in Quantum Field Theory and Quantum Gravity

Автор: Poul Henrik Damgaard; H. H?ffel; A. Rosenblum
Название: Probabilistic Methods in Quantum Field Theory and Quantum Gravity
ISBN: 1461366860 ISBN-13(EAN): 9781461366867
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Proceedings of a NATO ARW held in Cargese, France, August 21-27, 1989

Pattern Recognition and Neural Networks

Автор: Brian D. Ripley
Название: Pattern Recognition and Neural Networks
ISBN: 0521717701 ISBN-13(EAN): 9780521717700
Издательство: Cambridge Academ
Рейтинг:
Цена: 7762.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This 1996 book is a reliable account of the statistical framework for pattern recognition and machine learning. Valuable advice is included on both theory and applications, while case studies based on real data sets help readers develop their understanding. All data sets are available from www.stats.ox.ac.uk/~ripley/PRbook/

Introduction to Pattern Recognition: A Matlab Approach,

Автор: Sergios Theodoridis
Название: Introduction to Pattern Recognition: A Matlab Approach,
ISBN: 0123744865 ISBN-13(EAN): 9780123744869
Издательство: Elsevier Science
Рейтинг:
Цена: 5557.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An accompanying manual to "Theodoridis/Koutroumbas, Pattern Recognition", that includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия