Автор: Loring W. Tu Название: Differential Geometry ISBN: 331985562X ISBN-13(EAN): 9783319855622 Издательство: Springer Цена: 7685.00 р. Наличие на складе: Поставка под заказ. Описание: Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein`s general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory.
Название: Discrete differential geometry preliminary entry 38 ISBN: 3764386207 ISBN-13(EAN): 9783764386207 Издательство: Springer Рейтинг: Цена: 5589.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is the first book on a newly emerging field of discrete differential geometry providing an excellent way to access this exciting area. It provides discrete equivalents of the geometric notions and methods of differential geometry, such as notions of curvature and integrability for polyhedral surfaces.
Автор: Lipschutz, Martin M. Название: Schaum`s outline of differential geometry ISBN: 0070379858 ISBN-13(EAN): 9780070379855 Издательство: McGraw-Hill Рейтинг: Цена: 4803.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Schaum`s Outlines present all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.
Автор: Sharpe Название: Differential Geometry ISBN: 0387947329 ISBN-13(EAN): 9780387947327 Издательство: Springer Цена: 8378.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and
conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections.
Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what
Cartan did, which was to give a notion of "espaces generalises" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian
geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru