Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Approaching the kannan-lovasz-simonovits and variance conjectures, Alonso-gutierrez, David Bastero, Jesus


Варианты приобретения
Цена: 4890.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Alonso-gutierrez, David Bastero, Jesus
Название:  Approaching the kannan-lovasz-simonovits and variance conjectures
ISBN: 9783319132624
Издательство: Springer
Классификация:



ISBN-10: 3319132628
Обложка/Формат: Paperback
Страницы: 158
Вес: 0.26 кг.
Дата издания: 08.01.2015
Серия: Lecture notes in mathematics
Язык: English
Иллюстрации: Biography
Размер: 163 x 283 x 12
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Focusing on two central conjectures of Asymptotic Geometric Analysis, the Kannan-Lovasz-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the treated topics.


Conjectures in Arithmetic Algebraic Geometry

Автор: Wilfred W. J. Hulsbergen
Название: Conjectures in Arithmetic Algebraic Geometry
ISBN: 3528064331 ISBN-13(EAN): 9783528064334
Издательство: Springer
Рейтинг:
Цена: 7182.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro- duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich- let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper- ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza- tion of Dirichlet's L-functions with a generalization of class field the- ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory.

Noncommutative Iwasawa Main Conjectures over Totally Real Fields

Автор: John Coates; Peter Schneider; R. Sujatha; Otmar Ve
Название: Noncommutative Iwasawa Main Conjectures over Totally Real Fields
ISBN: 3642443354 ISBN-13(EAN): 9783642443350
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия