Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Introduction to methods of approximation in physics and astronomy, Van Putten, Maurice H. P. M.


Варианты приобретения
Цена: 9781.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Van Putten, Maurice H. P. M.
Название:  Introduction to methods of approximation in physics and astronomy
ISBN: 9789811029318
Издательство: Springer
Классификация:





ISBN-10: 9811029318
Обложка/Формат: Hardcover
Страницы: 345
Вес: 0.70 кг.
Дата издания: 18.04.2017
Серия: Undergraduate lecture notes in physics
Язык: English
Издание: 1st ed. 2017
Иллюстрации: 19 black & white illustrations, 71 colour illustrations, 5 colour tables, biography
Размер: 162 x 243 x 28
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

Preface

Part I Preliminaries

1. Complex numbers

1.1 Quotients of complex numbers

1.2 Roots of complex numbers

1.3 Sequences and Eulers constant

1.4 Power series and radius of convergence

1.5 Minkowski spacetime

1.6 The logarithm and winding number

1.7 Branch cuts for z

1.8 Branch cuts for z 1/p

1.9 Exercises

2. Complex function theory

2.1 Analytic functions

2.2 Cauchys Integral Formula

2.3 Evaluation of a real integral

2.4 Residue theorem

2.5 Moreras theorem

2.6 Liouvilles theorem

2.7 Poisson kernel

2.8 Flux and circulation

2.9 Examples of potential flows

2.10Exercises

3. Vectors and linear algebra

3.1 Introduction

3.2 Inner and outer products

3.3 Angular momentum vector

3.4 Elementary transformations in the plane

3.5 Matrix algebra

3.6 Eigenvalue problems

3.7 Unitary matrices and invariants

3.8 Hermitian structure of Minkowski spacetime

3.9 Eigenvectors of Hermitian matrices

3.10QR factorization

3.11Exercises

4. Linear partial differential equations

4.1 Hyperbolic equations

4.2 Diffusion equation

4.3 Elliptic equations

4.4 Characteristic of hyperbolic systems

4.5 Weyl equation

4.6 Exercises

Part II Methods of approximation

5. Projections and minimal distances

5.1 Vectors and distances

5.2 Projections of vectors

5.3 Snells law and Fermats principle

5.4 Fitting data by least squares

5.5 Gauss-Legendre quadrature

5.6 Exercises

6. Spectral methods and signal analysis

6.1 Basis functions

6.2 Expansion in Legendre polynomials 6.3 Fourier expansion

6.4 The Fourier transform

6.5 Fourier series

6.6 Chebychev polynomials

6.7 Weierstrass approximation theorem

6.8 Detector signals in the presence of noise

6.9 Signal detection by FFT using Maxima

6.10GPU-Butterfly filter in (f, f)

6.11Exercises

7. Root finding

7.1 Solving for √2 and π
7.2 Convergence in Newtons method

7.3 Contraction mapping

7.4 Newtons method in two dimensions

7.5 Basins of attraction

7.6 Root finding in higher dimensions

7.7 Exercises

8. Finite differencing: differentiation and integration

8.1 Vector fields

8.2 Gradient operator

8.3 Integration of ODEs

8.4 Numerical integration of ODEs

8.5 Examples of ordinary differential equations

8.6 Exercises

9. Perturbation theory, scaling and turbulence

9.1 Roots of a cubic equation

9.2 Damped pendulum

9.3 Orbital motion

9.4 Inertial and viscous fluid motion

9.5 Kolmogorov scaling of homogeneous turbulence

9.6 Exercises

Part III Selected topics

10. Thermodynamics of N-body systems

10.1 The action principle

10.2 Momentum in Euler-Lagragne equations

10.3 Legendre transformation

10.4 Hamiltonian formulation

10.5 Globular clusters

10.6 Coefficients of relaxation

10.7 Exercises

11. Accretion flows onto black holes

11.1 Bondi accretioin

11.2 Hoyle-Lyttleton accretion

11.3 Accretion disks

11.4 Gravitational wave emission

11.5 Mass transfer in binaries

11.6 Exercises

12. Rindler observers in astrophysics and cosmology

12.1 The moving mirror problem

12.2 Implications for dark matter

12.3 Exercises

A. Some units and consta




ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия