Описание: Uses the method of maximum likelihood to a large extent to ensure reasonable, and in some cases optimal procedures. This work treats the basic and important topics in multivariate statistics.
Описание: This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view.
Автор: Brin Название: Introduction to Dynamical Systems ISBN: 1107538947 ISBN-13(EAN): 9781107538948 Издательство: Cambridge Academ Рейтинг: Цена: 7762.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This introduction to the subject of dynamical systems is ideal for a one-year graduate course. From chapter one, the authors use examples to motivate, clarify and develop the theory. The book rounds off with beautiful and remarkable applications to such areas as number theory, data storage, and Internet search engines.
Описание: Providing expanded material on the restricted three body problem and celestial mechanics, the third edition has new material on reduction, orbifolds and the regularization of the Kepler problem, all with applications. It provides a mathematical structure of celestial mechanics for beginners, and will be useful to graduate students and researchers.
Автор: Wiggins, Stephen Название: Introduction to applied nonlinear dynamical systems and chaos ISBN: 1441918078 ISBN-13(EAN): 9781441918079 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior.
Описание: Suitable for students in the fields of mathematics, science, and engineering, this title provides a theoretical approach to dynamical systems and chaos. It helps them to analyze the types of differential equations that arise in their area of study.
Автор: Layek, G. C. Название: Introduction to dynamical systems and chaos ISBN: 8132225554 ISBN-13(EAN): 9788132225553 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Continuous Dynamical Systems.- Linear Systems.- Phase Plane Analysis.- Stability Theory.- Oscillations.- Theory of Bifurcations.- Hamiltonian Systems.- Symmetry Analysis.- Discrete Dynamical Systems.- Some Maps.- Conjugacy of Maps.- Chaos.- Fractals.
Автор: Jakob L?ber Название: Optimal Trajectory Tracking of Nonlinear Dynamical Systems ISBN: 3319465732 ISBN-13(EAN): 9783319465739 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.
Описание: This book demonstrates the structural characteristics of the optimal control policies in various stochastic supply chains and to shows how to make use of these characteristics to construct easy-to-operate sub-optimal policies.
Описание: The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.
Описание: From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning `strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2
Автор: Sanders J. A., Verhulst F., Murdock J. Название: Averaging Methods in Nonlinear Dynamical Systems ISBN: 0387489169 ISBN-13(EAN): 9780387489162 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Perturbation theory and in particular normal form theory has shown strong growth during the last decades. So it is not surprising that the authors have presented an extensive revision of the first edition of the Averaging Methods in Nonlinear Dynamical Systems book. There are many changes, corrections and updates in chapters on Basic Material and Asymptotics, Averaging, and Attraction. Chapters on Periodic Averaging and Hyperbolicity, Classical (first level) Normal Form Theory, Nilpotent (classical) Normal Form, and Higher Level Normal Form Theory are entirely new and represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are surveys on invariant manifolds in Appendix C and averaging for PDEs in Appendix E. Since the first edition, the book has expanded in length and the third author, James Murdock has been added.Review of First Edition"One of the most striking features of the book is the nice collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with profuse, illuminating diagrams." - Mathematical Reviews
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru