Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

From Gauss to Painlev?, Katsunori Iwasaki; Hironobu Kimura; Shun Shimemura


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Katsunori Iwasaki; Hironobu Kimura; Shun Shimemura
Название:  From Gauss to Painlev?
ISBN: 9783322901651
Издательство: Springer
Классификация:
ISBN-10: 3322901653
Обложка/Формат: Soft cover
Страницы: 347
Вес: 0.55 кг.
Дата издания: 12.06.2012
Серия: Aspects of Mathematics
Язык: English
Иллюстрации: Biography
Размер: 234 x 156 x 19
Читательская аудитория: Professional & vocational
Основная тема: Engineering, general
Подзаголовок: A Modern Theory of Special Functions
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Preface The Gamma function, the zeta function, the theta function, the hyper- geometric function, the Bessel function, the Hermite function and the Airy function, . . . are instances of what one calls special functions. These have been studied in great detail. Each of them is brought to light at the right epoch according to both mathematicians and physicists. Note that except for the first three, each of these functions is a solution of a linear ordinary differential equation with rational coefficients which has the same name as the functions. For example, the Bessel equation is the simplest non-trivial linear ordinary differential equation with an irreg- ular singularity which leads to the theory of asymptotic expansion, and the Bessel function is used to describe the motion of planets (Keplers equation). Many specialists believe that during the 21st century the Painleve functions will become new members of the community of special func- tions. For any case, mathematics and physics nowadays already need these functions. The corresponding differential equations are non-linear ordinary differential equations found by P. Painleve in 1900 fqr purely mathematical reasons. It was only 70 years later that they were used in physics in order to describe the correlation function of the two dimen- sional Ising model. During the last 15 years, more and more people have become interested in these equations, and nice algebraic, geometric and analytic properties were found.



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия