Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Analysis and Design of Machine Learning Techniques, Patrick Stalph


Варианты приобретения
Цена: 13060.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Patrick Stalph
Название:  Analysis and Design of Machine Learning Techniques
ISBN: 9783658049362
Издательство: Springer
Классификация:




ISBN-10: 3658049367
Обложка/Формат: Soft cover
Страницы: 155
Вес: 0.24 кг.
Дата издания: 17.02.2014
Язык: English
Иллюстрации: 62 black & white illustrations, biography
Размер: 210 x 148 x 10
Читательская аудитория: Professional & vocational
Основная тема: Control, Robotics, Mechatronics
Подзаголовок: Evolutionary Solutions for Regression, Prediction, and Control Problems
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Manipulating or grasping objects seems like a trivial task for humans, as these are motor skills of everyday life. The author makes a connection between robotics and cognitive sciences by analyzing motor skill learning using implementations that could be found in the human brain - at least to some extent.


Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 18622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.

Statistical and Machine Learning Approaches for Network Analysis

Автор: Dehmer
Название: Statistical and Machine Learning Approaches for Network Analysis
ISBN: 0470195150 ISBN-13(EAN): 9780470195154
Издательство: Wiley
Рейтинг:
Цена: 17416.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: * Provides a general framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for graph classification. * The proposed methods are applied to different real data sets to demonstrate their ability.

Machine Learning Techniques for Gait Biometric Recognition

Автор: James Eric Mason; Issa Traor?; Isaac Woungang
Название: Machine Learning Techniques for Gait Biometric Recognition
ISBN: 331929086X ISBN-13(EAN): 9783319290867
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- Background.- Experimental Design and Dataset.- Feature Extraction.-Normalization.- Classification.- Measured Performance.- Experimental Analysis.- Conclusion.

Machine Learning in Document Analysis and Recognition

Автор: Simone Marinai; Hiromichi Fujisawa
Название: Machine Learning in Document Analysis and Recognition
ISBN: 3642095119 ISBN-13(EAN): 9783642095115
Издательство: Springer
Рейтинг:
Цена: 26120.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world.

Machine Learning

Автор: Mitchell
Название: Machine Learning
ISBN: 0071154671 ISBN-13(EAN): 9780071154673
Издательство: McGraw-Hill
Рейтинг:
Цена: 10466.00 р.
Наличие на складе: Поставка под заказ.

Описание: Covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. This book is intended to support upper level undergraduate and introductory level graduate courses in machine learning.

Scaling up Machine Learning

Автор: Bekkerman
Название: Scaling up Machine Learning
ISBN: 0521192242 ISBN-13(EAN): 9780521192248
Издательство: Cambridge Academ
Рейтинг:
Цена: 14731.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия